
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 1

Software Reuse

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 2

Software reuse

In most engineering disciplines, systems are
designed by composing existing components
that have been used in other systems.
Software engineering has been more focused
on original development but it is now
recognised that to achieve better software,
more quickly and at lower cost, we need to
adopt a design process that is based on
systematic software reuse.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 3

Reuse-based software engineering
Application system reuse
• The whole of an application system may be reused

either by incorporating it without change into other
systems (COTS reuse) or by developing application
families.

Component reuse
• Components of an application from sub-systems to

single objects may be reused. Covered in Chapter 19.
Object and function reuse
• Software components that implement a single well-

defined object or function may be reused.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 4

Reuse benefits 1

Increased dependability Reused software, that has been tried and tested in working systems,
should be m ore dependable than new software. The initial use of the
software reveals any design and implementation faults. These are then
fixed, thus reducing the number of failures when the software is reused.

Reduced process risk If software exists, there is less uncertainty in the costs of reusing that
software than in the costs of development. This is an important factor
for project management as it reduces the margin of error in project cost
estimation. This is particularly true when relatively large software
components such as sub-systems are reused.

Effective use of specialists Instead of application specialists doing the same work on different
projects, these specialists can develop reusable software that
encapsulate their knowledge.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 5

Reuse benefits 2

Standards compliance Some standards, such as user interface standards, can be
implemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is o ften more
important than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 6

Reuse problems 1

Increased maintenance
costs

If the source code of a reused software system or component is n ot
available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with
system changes.

Lack of tool support CASE toolsets may not support development with reuse. It may be
difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account.

Not-invented-here
syndrome

Some software engineers sometimes prefer to re-write components as
they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing
original software is s een as more challenging than reusing other
peopleÕs software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 7

Reuse problems 2

Creating and maintaining a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Finding, understanding and
adapting reusable components

Software components have to be discovered in a library, understood and,
sometimes, adapted to work in a n ew environment. Engineers must be
reasonably confident of finding a component in the library before they will
make routinely include a component search as part of their normal
development process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 8

The reuse landscape

Although reuse is often simply thought of as
the reuse of system components, there are
many different approaches to reuse that may
be used.
Reuse is possible at a range of levels from
simple functions to complete application
systems.
The reuse landscape covers the range of
possible reuse techniques.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 9

Reuse approaches 1

Design patterns Generic abstractions that occur across applications are
represented as design patterns that show abstract and concrete
objects and interactions.

Component-based
development

Systems are developed by integrating components
(collections of objects) that conform to component-model
standards. This is covered in Chapter 19.

Application
frameworks

Collections of abstract and concrete classes that can be
adapted and extended to create application systems.

Legacy system
wrapping

Legacy systems (see Chapter 2) that can be ŌwrappedÕ by
defining a set of interfaces and providing access to these
legacy systems through these interfaces.

Service-oriented
systems

Systems are developed by linking shared services that may be
externally provided.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 10

Reuse approaches 2

Application product
lines

An application type is generalised around a common
architecture so that it can be adapted in different ways for
different customers.

COTS integration Systems are developed by integrating existing application
systems.

Configurable vertical
applications

A generic system is designed so that it can be configured to
the needs of specific system customers.

Program libraries Class and function libraries implementing commonly-used
abstractions are available for reuse.

Program generators A generator system embeds knowledge of a particular types
of application and can generate systems or system fragments
in that domain.

Aspect-oriented
software development

Shared components are woven into an application at different
places when the program is compiled.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 11

Reuse planning factors

The development schedule for the software.
The expected software lifetime.
The background, skills and experience of the
development team.
The criticality of the software and its non-
functional requirements.
The application domain.
The execution platform for the software.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 12

Component-based software
engineering

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 13

Component-based development

Component-based software engineering
(CBSE) is an approach to software
development that relies on software reuse.
It emerged from the failure of object-oriented
development to support effective reuse. Single
object classes are too detailed and specific.
Components are more abstract than object
classes and can be considered to be stand-
alone service providers.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 14

CBSE essentials

Independent components specified by their
interfaces.
Component standards to facilitate component
integration.
Middleware that provides support for
component inter-operability.
A development process that is geared to
reuse.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 15

CBSE and design principles

Apart from the benefits of reuse, CBSE is
based on sound software engineering design
principles:
• Components are independent so do not interfere

with each other;
• Component implementations are hidden;
• Communication is through well-defined interfaces;
• Component platforms are shared and reduce

development costs.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 16

CBSE problems

Component trustworthiness - how can a component
with no available source code be trusted?
Component certification - who will certify the quality of
components?
Emergent property prediction - how can the emergent
properties of component compositions be predicted?
Requirements trade-offs - how do we do trade-off
analysis between the features of one component and
another?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 17

Components

Components provide a service without regard
to where the component is executing or its
programming language
• A component is an independent executable entity

that can be made up of one or more executable
objects;

• The component interface is published and all
interactions are through the published interface;

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 18

Component definitions

Councill and Heinmann:
• A software component is a software element that

conforms to a component model and can be
independently deployed and composed without
modification according to a composition standard.

Szyperski:
• A software component is a unit of composition with

contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition
by third-parties.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 19

Component as a service provider

The component is an independent, executable
entity. It does not have to be compiled before
it is used with other components.
The services offered by a component are
made available through an interface and all
component interactions take place through
that interface.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 20

Component characteristics 1

Standardised Component standardisation means that a component that is
used in a CBSE process has to conform to some standardised
component model. This model may define component
interfaces, component meta-data, documentation, composition
and deployment.

Independen t A component should be independen t Š it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs
externally provided services, these should be explicitly set out
in a ŌrequiresÕ interface specification.

Composable For a component to be composable, all external interactions
must take place through publicly defined interfaces. In
addition, it must provide external access to information about
itself such as its methods and attributes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 21

Component characteristics 2

Deployable To be deployable, a component has to be se lf-contained and
must be able to operate as a stand-alone entity on some
component platform that implements the component model.
This usually means that the component is a binary component
that does not have to be compiled before it is deployed.

Documented Components have to be fully documented so that potential
users of the component can decide whether or not they meet
their needs. The syntax and, ideally, the semantics of all
component interfaces have to be specified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 22

Component interfaces

Provides interface
• Defines the services that are provided by the

component to other components.
Requires interface
• Defines the services that specifies what services

must be made available for the component to
execute as specified.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 23

Component interfaces

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 24

A data collector component

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 25

Components and objects

Components are deployable entities.
Components do not define types.
Component implementations are opaque.
Components are language-independent.
Components are standardised.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 26

Component models

A component model is a definition of standards for
component implementation, documentation and
deployment.
Examples of component models
• EJB model (Enterprise Java Beans)
• COM+ model (.NET model)
• Corba Component Model

The component model specifies how interfaces should
be defined and the elements that should be included in
an interface definition.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 27

Middleware support

Component models are the basis for middleware that
provides support for executing components.
Component model implementations provide:
• Platform services that allow components written

according to the model to communicate;
• Horizontal services that are application-independent

services used by different components.
To use services provided by a model, components are
deployed in a container. This is a set of interfaces
used to access the service implementations.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 28

The CBSE process

When reusing components, it is essential to
make trade-offs between ideal requirements
and the services actually provided by available
components.
This involves:
• Developing outline requirements;
• Searching for components then modifying

requirements according to available functionality.
• Searching again to find if there are better

components that meet the revised requirements.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 29

The CBSE process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 30

Component identification issues

Trust. You need to be able to trust the supplier of a
component. At best, an untrusted component may not
operate as advertised; at worst, it can breach your
security.
Requirements. Different groups of components will
satisfy different requirements.
Validation.
• The component specification may not be detailed

enough to allow comprehensive tests to be developed.
• Components may have unwanted functionality. How

can you test this will not interfere with your application?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 31

Ariane launcher failure

In 1996, the 1st test flight of the Ariane 5 rocket ended
in disaster when the launcher went out of control 37
seconds after take off.
The problem was due to a reused component from a
previous version of the launcher (the Inertial
Navigation System) that failed because assumptions
made when that component was developed did not
hold for Ariane 5.
The functionality that failed in this component was not
required in Ariane 5.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 32

Component composition

The process of assembling components to
create a system.
Composition involves integrating components
with each other and with the component
infrastructure.
Normally you have to write ‘glue code’ to
integrate components.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 33

Composition trade-offs

When composing components, you may find conflicts
between functional and non-functional requirements,
and conflicts between the need for rapid delivery and
system evolution.
You need to make decisions such as:
• What composition of components is effective for

delivering the functional requirements?
• What composition of components allows for future

change?
• What will be the emergent properties of the composed

system?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 34

Component development for reuse

Components developed for a specific
application usually have to be generalised to
make them reusable.
A component is most likely to be reusable if it
associated with a stable domain abstraction
(business object).
For example, in a hospital stable domain
abstractions are associated with the
fundamental purpose - nurses, patients,
treatments, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 35

Component development for reuse
Components for reuse may be specially constructed by
generalising existing components.
Component reusability
• Should reflect stable domain abstractions;
• Should hide state representation;
• Should be as independent as possible;
• Should publish exceptions through the component

interface.
There is a trade-off between reusability and usability
• The more general the interface, the greater the

reusability but it is then more complex and hence less
usable.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 36

Changes for reusability

Remove application-specific methods.
Change names to make them general.
Add methods to broaden coverage.
Make exception handling consistent.
Add a configuration interface for component
adaptation.
Integrate required components to reduce
dependencies.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 37

Legacy system components

Existing legacy systems that fulfil a useful
business function can be re-packaged as
components for reuse.
This involves writing a wrapper component
that implements provides and requires
interfaces then accesses the legacy system.
Although costly, this can be much less
expensive than rewriting the legacy system.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 38

Adaptor components

Address the problem of component
incompatibility by reconciling the interfaces of
the components that are composed.
Different types of adaptor are required
depending on the type of composition.
An addressFinder and a mapper component
may be composed through an adaptor that
strips the postal code from an address and
passes this to the mapper component.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 39

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000)

Composition through an adaptor

The component postCodeStripper is the
adaptor that facilitates the sequential
composition of addressFinder and mapper
components.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 18 Slide 40

Adaptor for data collector

