=R Z1800-Series

Digital Function
Processor -
User's Guide

Teradyne, Inc.

Assembly Test/Walnut Creek

2625 Shadelands Drive, Walnut Creek, California 94598-2597
Publication Number 1800M046 Copyright Teradyne Inc.

Product Warranty

THE STANDARD TERADYNE WARRANTY CONSTITUTES THE ONLY REPRESENTATION OR WARRANTY MADE BY
TERADYNE WITH RESPECT TO ANY EQUIPMENT, GOODS OR SERVICES SUPPLIED BY TERADYNE. TERADYNE MAKES
NO OTHER WARRANTIES OR REPRESENTATIONS, EXPRESSED OR IMPLIED, IN FACT OR IN LAW, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL
TERADYNE BE LIABLE FOR INCIDENTAL, SPECIAL OR CONSEQUENTIAL PENALTIES OR DAMAGES, INCLUDING LOST
PROFITS, OR PENALTIES AND/OR DAMAGES FOR DELAY IN DELIVERY OR FAILURE TO GIVE NOTICE OF DELAY, EVEN IF
TERADYNE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Due to an ongoing policy of constantly updating equipment and procedures, the contents of this document are subject to change
without notice.

Teradyne assumes no responsibility for errors or for any damages that result from the implementation of the procedures described
in this publication. Teradyne also reserves the right to make changes in its products without incurring any obligation to incorporate
such changes in units previously sold or shipped. Teradyne makes no commitment to update nor to keep current the information
contained in this document.

Teradyne assumes no responsibility for the use of any circuitry other than the circuitry embodied as a Teradyne product. No other
circuit patent licenses are implied.

This software system consists of computer software and documentation. It contains trade secrets and confidential information
which are proprietary to Teradyne, Inc. Its use or disclosure in whole or in part without the express written permission of Teradyne,
Inc. is prohibited.

This software system is also an unpublished work protected under the copyright laws of the United States of America. If this work
becomes published, the following notice shall apply:

Copyright © 1994-1998 Teradyne, Inc. All Rights Reserved.

Trademarks
The following are trademarks or registered trademarks of Teradyne and may be used to describe only Teradyne, Inc., Assembly
Test/Walnut Creek products:

APC HostLink Safecracker

AutolLoad Inline Device Programmer Spectrum 8800-Series

BoardWatch (ILDP) Test Toolbox

Boundary Scan Intelligent InterScan Tester-Aided Instruction
Diagnostics (BSID) MultiScan Il TestQA

CapScan PRISM VICTORY

DeltaScan ProcessWatch VP/IVXI

FrameScan Programmer Efficiency WaveScan

FrameScan Plus Package (PEP) Z1800-Series

Graphit Quick-Check

Borland and Paradox are trademarks of Borland International, Inc.

C++ and UNIX are registered trademarks of AT&T Bell Laboratory.

Codewright is a trademark of Premia Corporation.

ETHERNET is a trademark of Xerox Corporation.

FABmaster is a registered trademark of FABMASTER S.A.

HP-UX is a registered trademark of Hewlett-Packard Company.

IBM, MicroChannel, and PS/2 are registered trademarks of International Business Machines, Inc.
LabWindows, LabWindows/CVI, NI-488.2, and NI-VXI are trademarks of National Instruments Corporation.
Microsoft, MS-DOS, QuickC, Windows 95, and WindowsNT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

0S-9 is a registered trademark of Microware Systems Corporation.

SunOS and Solaris are registered trademarks of Sun Microsystems, Inc.

VAX and VMS are registered trademarks of Digital Corporation.

Digital Function Processor
User’s Guide

Manual History
* Fifth Edition, May 1998, Version B.1 software
* Fourth Edition, October 1995, Version B.0 software

 Third Edition, September 1994, Version A.O software
Changes the manual’'s name fredROMPTest Il User's Guidi Digital Function Processor
User’s Guide

» Second Edition, July 1994, Version A.O software
* First Edition, June 1994, Version A.0O software

 Preliminary Edition, December 1993

Publications No. 1800M046

© 1993-1998 Teradyne Inc., Assembly Test/Walnut Creek

2625 Shadelands Drive Walnut Creek, CA 94598 (925) 932-6900
Customer Service Hotline (800) 457-8326

Contents

Chapter 1 Standard Flash Memory Applications

] (oo [Tox 1o o ISP 1-1

L@ =T T P 1-2

Y0 11177 = USSR 1-3
[P L0 11T T PSP 1-4

DFP and DR2p SIot POPUIALIONScoooiiiiiiiiiiie et B 1

] 4 oI = L0 T o [PSS 1-7

Chapter 2 Software Architecture

(oo 11 o3 1o o [2-1

(LY g 1 1 (=T = U 1[0 o P 2-2

L@ aT=T =1 (0] £ U 2-3
JLIC=T03 0 13 =T g U PPP 2:4
Custom ApPPlICAtION DEVEIOPEISeuviiiiiiiiieee ettt e e s 2-4

Using the DFP with Z1800-SEeriEeS TESIEIS......ccciiiiiiiiiiiiiiiiiit ettt e e 2-5
SEettiNg UP DFP ...ttt e e e e e e e et ——— 2:5...
Generating the DFP WOIKSNEEToooiiiiieiiiii s 2-9
WOIKSNEEL FIEIAS ... e e e e e e e e e e e e e e e 2:9...

SOftWAIE MOUUIES ...ttt e s e e e e e e e e e e e e eeeeee e s s s 2:10
Standard TOOIS ANd FIlES......coooo i 2., 2
1LY =T g =] g =g o = 2:28...

DT L0 S (oS} Y] (=] o PSSP 2:29

Tools for CUStOM DEVEIOPMENT........eiiiiiiiee s 30...... 2-

Chapter 3 Hardware—Theory of Operation

[T (oo [Tox 1o o ISP 3-1

[o o= TaTo N [o] (=] X0 o1 o T=Tox 1o o 1SS 3:3..
0111 3-4
ConNectors and CONIIOIS..........uuuuuiiiiiei e ee e e e e e e e e e e e e e e e e e Y/
[o Tox PP 3-6
AL . e a e — 3-6

] [od 1 1 3-7

DFP Function and Software CONLIOL..........cooiiiiiiiiiiiiiiieie e 9....... 3-
Yo [0 ST T o I O O T 3-10.......
YT RS (T D= ot] o 1[0 3:13.....

LOQIC DESIGN—DR 2D ..uuii it i e ettt e e e e ettt a e e e e e e e e ————- 3-28...
Gate Array INPUE MUIIPIEX ...covveiie e e e 3-30
TRE GBUS ...t e e e e e e e ettt e e e e e e aaaaa e e e e e e e e e e nnnns 3-30
Other SIgNAIS ON J4 ...ttt 3-31....
Gate Array OULPUL MURIPIEX.........uuiiiiiiiiiiiiii e e e 3-32
U73—the ADAress DECOUE PALcccooeiieieiiieiciies ettt s e e e e e e e e e e e e e eeenenenannnnes 3-35
U74—the 1/O CONIOI PAL......eiiieii et e e e e e e et e e e e e e e e aaes 3-38
Significant Features of Handshaking and Serial POrts............ccccooeiiiiiiiiiiicceeeeeeee, 3-40

Logic Design—Channel Control Card...............uuiuuuiiiiiiiie e e e e eeeeeeees 3-41
Connectors, Signal Names, and Cable PiNS...........ooooiiiiiiii e 3-41
CCC AJAIESS MABNAGEIMENL.uuttiiiiiiiiiiieeee e e e e e e e e e e e e e e et e e e e e eeaaaaasaaaaaannenaeereneees 3-44
Channel Control Card Hardware DetailSccoovviiiiiieiiicicie e 3-46

o AN I o [= o 1 PRSP 3-51..

Chapter 4 Custom Example—Serial Boot

1o To [8 ox 1 o] o [PPSR 4-1

PT2.NIFIE—B8CLAFL ... ettt s e e e e e e e e e e e e eeeeeeeeeessmnas 4-2....
PTPROG.C FIlE—B8CLLFLuuiiiiiiiiiiiiiiiiiitieee et r e e e e e e e e e e e e e e e e e s e s annanes 2....
Assembly Source Code—68HCLLIFLcccooiiiiiiii i e e e e e aeae

Chapter 5 Custom Example—Parallel Flash in Free Air

[(g0 o 1V le3 i [0] o NPT ET TR 5-1
o V2 LN 1| TR 5-2
P TP RO G.C FUlE oo e e e e e e e e e et e e e e e e e e e e e e e et e e e e e s s 5-2

Chapter 6 Custom Example—Serial Flash in Free Air

N O U T ON ... e e et ettt e e e et eeeenreneen e e e s o — 6-1
o 2 | T 6-2
PTPROG.C Il e e e e e et v 6-2

Chapter 7 PT2.H Listing
FaT i goTo [U i1 o] o FS PO 7-1

Chapter 8 ISO9141 Option

THeory Of OPEIatiON......cci it e e ettt s s e e e e e e e e eeeeeeeeeeesnnennnnns 8-2
PrOGraMIMING.....cciiiiiiiiiei e e e e e e e e e e e e et e e e etb bbb a e e e e e e e e e e e e e s mm— 8-3
Example -- TTL leVel - CHA ...
Example -- ISO 1Vl - CHA ... et e e e e e e e e e e e e eeeeaaanaaes
YY1 (=] 0 4 OF= T o T- T | P PPRPR 8-4
1153 7= = o o PSS 8-4
REIMOVAL ...ttt ettt e e e e e e e e e e e e e e s e s s smmmmnnnnnenanss 8-4

Chapter 9 Maintenance

Parts Lists and Drawings Section
Parts Lists
SFTWR KIT, Z18XX-DFP (1 sheet)
OPT. DIG. FNCT. PRCSR (2 sheets)
OPT. DIG. FNCT. PRCSR 21860 (2 sheets)
PCA, DRP2 (4 sheets)
Drawings
Opt. DFP Z1840/50 (3 sheets)
Opt. DFP 21860 (3 sheets)
PCA, DRP2 (1 sheet)
Channel Control Card (2 sheet)
PCA, DRP2 (29 sheets)

Index

Vi Digital Function Processor User’s Guide-5th Ed.

b

lllustrations

Figure 1.1 Hardware INterconNNECt DIAQIamMcoouiiieieeiiiiieiiieiiiiiiiiee s e e e e e e e e e eeeeeeeeennnes 1-5
Figure 1.2 Preferred Locations for DR2p Boards in DFP-Equipped Testers..............ccceeee 1-6
Figure 1.3 Generic Pinout of DR2P BOAIduuuuiiiiiiiiiie e e e e e e e e e e e e e eeeeaanens 1-8
Figure 1.4 Fixture Node Assignments for Flash-In-Free-Air Operations............ccccoveeeeeeeennn. 1-9
Figure 1.5 Fixture Node Assignments for Serial Bootstrap and Handshake Operations..... 1-10
Figure 2.1 Software System Used During Board Testing..............couvvvviiiiiiiiiiiieeeeeeeeeeeeeiiiens 2-3
Figure 2.2 DFP Directory Summary for Z1800-Series System Softwareccccceeeeennn. 2-10
Figure 2.3 DFP Directory SUMmMary for DFPooeiii e 2-11
Figure 3.1 Hardware Overview and Interconnect Diagram.............ccoovvvvvviiiiiiiiiiiiiieiee e, 3-3
FIQUre 3.2 DFP’S DR2 RESOUICEScuuuuuuuiiiiiaaaeeeeeeeeeeeeeeeeitsttansaaaa s s e e e e e aaaaaeeeeeesssssssnnnnnnaaeas 3-9
Figure 3.3 Block Diagram, DR2P BOardcccouiiiiiiiiiiiiiiiiiieee e 3-29
Figure 3.4 DIP SWItCh SettiNgS.......ccoiiiiiiieecei e e e e e e e e e e e e e aaaananaes 3-45
Figure 4.1 Serial Boot INterconNeCt DIagramccoooiiiiiiiiiiiiiiiiiaae e 4-1
Figure 5.1 Serial Flash In Free Air Interconnect Diagramccccuvvvviiiiiiieiieeeeeeeeeeeeeennnenns 5-1
Figure 6.1 Parallel Flash In Free Air Interconnect Diagramcccceeeevvieviiieviiiiiiiicineeenn, 6-1
Tables

Table 3.1 Channel Functionality in Various Applications...............cccceeiiiiiiiieieeeeeeeeeeeeiiiiins 3-10
Table 3.2 Base AddresSses fOr CCCS.....cooiiiiiiiiiiiii ettt e e 3-11
Table 3.3 Programmer’s 1O POIrt Mapcccccuuiiiiiiiiiiiiiieee e 3-12
Table 3.4 POrt A & B CONIIOL.......coooiiiii it e e 3-16
Table 3.5 Cable Pin Numbers, Signal Names...........oooiiiiiiiiiiiieee e 3-41
Table 3.6 Example of Board AddresSs SettiNgSuvviiiiiiiiiieiiiieieiieieiiiieiee e 3-45
Table 3.7 Normal Jumper ConfiQUIationccooeiiiiieeeiiii e e e 3-50

Digital Function Processor User’s Guide-5th Ed. vii

Standard Flash Memory Applications 1

Note:

L@ 1Y =T VT S 1-2

DFP and DR2p Slot Populationscceeveveveeieiiieennnns 1-5

DR2P BOAIdS......ceeeeeeeeeeeeeeeie e 1-6
Infroduction

The Digital Function Processor (DFP) is a flexible platform for
implementing value-added tests and product functional tests on the
Z1800-Series board testers.

Initial DFP applications program nonvolatile memories such as
EEPROM and Flash ROM. Future applications may include full
cell memory testing and product functional testing. This manual
concentrates on the nonvolatile memory programming applications.

Target devices for current applications include nonvolatile
memories, electrically erasable PROMSs, in-system programmable
logic devices, and microcontrollers that can be serially
bootstrapped.

DFP has three main modes of operation:
* free-air

* serial boot

» handshake

In the free-air mode, DFP writes user data files directly into DUT
(device under test) nonvolatile memories. This mode is useful
when the DUT’s nonvolatile memory is fully accessible.

In the serial boot mode, DFP loads a program into DUT random
access memory (RAM) using a serial bootstrap protocol, the DUT
program being designed to write into the internal EEPROM of the
DUT CPU.

In the handshake mode, DFP bootstraps the DUT’s CPU (central
processing unit), then feeds parallel data to it on demand. DFP
provides its own data path and does not depend on the VP (vector
processor) option. The DUT CPU program handles the details of
the nonvolatile memory interactions.

DFP is compatible with the 21805, 21808, 21840, 21850, 21860,
71866, 21880, 21884, and 21890 testers. The Z1800 and 21820
cannot accommodate the DFP, due to lack of rack mounting
facilities for the chassis.

The factory can quote custom modifications and retrofits for
existing testers, including the 21800 and Z1820. However,
retrofits may require adding the Relay Array Board or
upgrading to the current Programmable Power Supply control
board to provide a DFP bootstrap control relay.

Standard Flash Memory Applications

Overview

1-2

Software

Digital Function Processor software is completely separate from
the main body of Z1800-series system software, so updates to either
software can occur independently of the other.

The DFP software package includes examples of source code and
library routines. You may use the C compiler as needed to develop
programs that run in the DFP computer, to develop external
programs that are called from in-circuit test pages, to develop Test
Toolbox programs, and to develop occasional software tools such
as format conversions. The C programs provided with DFP are
written for MicroSoft QuickC version 2.5 and Turbo C++ 3.0 for
DOS.

C programs for the main tester PC are normally developed and
compiled on the main tester PC. Those for the DFP computer are
best compiled and debugged on the DFP computer. The main tester
PC can stay in a test step in edit mode while you make changes and
recompile the DFP code.

Hardware

DFP hardware consists of

* a chassis

* a computer

» Teradyne Channel Control Cards (CCCs)

* a Driver Receiver 2p (DR2p) board in the Z1800-series tester

The DFP chassis contains a PC clone style computer. The DFP
computer has its own hard disk with 4 mb of RAM, and runs MS-
DOS operating system version 6.2 or later. The motherboard of the
DFP has conventional expansion-board slots which support
Teradyne Channel Control Cards (CCCs). The DFP computer is
connected to the Z1800-Series tester’s computer by a null-modem
cable between the COM ports in each computer.

Digital Function Processor User’s Guide-5th Ed.

Overview

A DR2p board has all the in-circuit testing features of the standard
32-channel DR2. In addition, the DR2p channels have features that
allow them to serve the needs of DFP. DR2p channels pass all
standard Z1800-series self-tests and can be used as ordinary in-
circuit test channels for digital Gray code, vector processors,
analog, and mixed signal purposes in applications not using DFP
functions. Specialization of certain DR2p channels to certain
functions demands special wiring for fixtures in applications that
use DFP functions.

DFP and the Z1800-series main computer do not operate as equals
on a network. Rather, DFP is a slave to the Z1800-series main
computer. The Z1800-series main computer sends commands to the
DFP computer. The command interface consists of Com ports
connected by a null modem cable. The bit rate in this cable is
programmable.

Digital Function Processor User’s Guide-5th Ed. 1-3

Standard Flash Memory Applications

Figure 1.1 Hardware Interconnect Diagram

Keyboard & CRT Z1800-Series

for application Test System
development only

\ L L L \
\ Unit-Under-Test & Device(s) Programmed \

| Standard Z18XX-Series Fixture Interface |
A A A A A f

[L 1 L [

DR2p| |DR2p! |DR2p! IDR2p! | DR2 || DR2
| for ICT| [for ICT

| |
| [!
| [!
| [|
| (] |
| (] |
[[I
1 1
1
v

Z1800-Series
Test System

1

Ne-e
! \
L S 1
1

Digital Function Processor

- I COM Port Channel Control Card !

(cee)
Channel Control Card} |
cco |
Channel Control Card |
cco |

- Keyboard Port| |Channel Control Card | | ;
: (cCce) |
N Video Port | ----------------—- J

| 3.5"Floppy | [Power Supply |

Note: Digital Function Processor shown configured with
one Channel Card installed,
expandable up to four CCCs.

1-4 Digital Function Processor User’s Guide-5th Ed.

DFP and DR2p Slot Populations

DFP and DR2p Slot Populations

In simple serial boot applications, one board in serial mode is
sufficient to serve two DUT microcontrollers. You can add a
second board to allow service of a third and fourth microcontroller
in cases where, for example, the board being tested has four
daughter panels.

In serial-boot-with-handshake applications, one board in serial
mode serially bootstraps up to two DUT microcontrollers. A second
board in handshake mode can provide 8-bit wide handshake data to
each of two DUT microcontrollers, or 16-bit wide handshake data
to a single DUT microcontroller.

In flash-in-free-air applications, one board in address mode
generates addresses for DUT memory. A second board in parallel
or data mode provides 16-bit wide data and control signals to the
DUT flash memories.

Teradyne has adopted a convention for the location of DR2p boards
associated with the individual CCCs, although the DR2p boards can
in fact be placed anywhere in the cage. For the sake of being usable
with small (less than 320 node) fixtures, DFP channels are placed in

the top four driver-receiver board locations of the part of the tester
available to 320-node fixtures.

Test Head Cage Slot Numbers

Figure 1.2 Preferred Locations for DR2p Boards in DFP-Equipped Testers

Slot9 Slot8 Slot7 Slot6 Slot5 Slot4 Slot3 Slot2 Slotl Slot@
Nodes | Nodes | Nodes | Nodes
319-288| 287-256| 255-224| 223-192
312 4 304 280 ¢ ¢272 248 o 240 216 ¢ 208 184 ¢ ¢ 176 152 ¢ ¢ 144 120 ¢ o112 88 ¢ 80 56 ¢ ¢48 24 4 016
313 e @305 281 e @273 249 o @241 217 o 209 oo oo oo oo LY LY
314 ¢ 306 282 ¢ 0274 250 o @242 218 o @210 o o LY LY LY LY
315 e 307 283 ¢ 275 251 @ ©243 219 ¢ 211 L) LY LY oo LY LY
316 e 308 284 ¢ @276 252 o 0244 220 ¢ 212 oo oo oo oo oo LY
317 o @309 285 e @277 253 o 245 221 o 213 oo oo oo oo LY LY
318 e 310 286 o @278 254 o 246 222 o 0214 oo oo oo oo oo oo
319 e 311 287 o 279 255 o @ 247 223 o 215 191 e ¢ 183 159 ¢ e 151 127 ¢ @119 95e 87 63 e 55 3le 023
+ o 0— + 00— + o0 - + o0 - + o0 - + 00— + 00— + o0 — + 00— + o 0-
296 ¢ o288 264 o o256 232 ¢ 0224 200 ¢ ¢ 192 168 ¢ o 160 136 ¢ 128 104 ¢ ¢ 96 72 ¢ 064 40 ¢ 032 8e o0
297 o «289 265 o @257 233 o 225 201 o 193 oo oo oo oo LY LY
298 ¢ @ 290 266 o 258 234 o @226 202 o ©194 o0 LY LY LY LY LY
299 ¢ 291 267 o 259 235 e 227 203 o © 195 L) LY LY o LY LY
300 ¢ @292 268 o @260 236 o 228 204 o ¢ 196 oo oo oo oo oo LY
301 e @293 269 o @261 237 o @229 205 o 197 oo oo oo) LY LY
302 ¢ @294 270 o @262 238 e 230 206 o ¢ 198 oo oo oo oo oo oo
303 e 295 271 e 263 239 ¢ @231 207 o @ 199 175 e @ 167 143 ¢ @135 111 e ¢ 103 790 071 47 @ 39 15e o7
+ o 0 — + o o - + o 0 - + o 0 - + o 0 - + o 0 — + o o — + o o — + o 0 — + o 0 -
Fourth | Third | Second| First Fixture Receiver, top view
DR2p | DR2p | DR2p | DR2p
~€& DR2p boards expand to the left

Digital Function Processor User’s Guide-5th Ed.

Standard Flash Memory Applications

DR2p Boards

1-6

DR2p boards have all the features of DR2 boards, including the
ability to run all standard Z1800-series in-circuit tests and
diagnostic tests on all channels. In addition, DR2p boards can
program nonvolatile memory (NVM). Signals sent from DFP to the
DUT pass through the in-circuit drive amplifiers on the DR2p
boards. Thus they are capable of backdrive where the situation calls
for it. No actual backdriving takes place if the DUT is able to place
its internal buses in a high impedance state. DR2p boards provide
parallel sensing facilities. DFP and its DR2p boards are compatible
with VP or THC versions of Z1800-series testers.

Because DFP pin functions are varied, and in many cases different
from, normal in-circuit functions, all pins are not equal. Some of
DFP pin functions are dedicated to specific groups of node
numbers. Addresses appear at one group of pins in the fixture
receiver, parallel data at another, serial ports at another, and special
voltages at another.

Fixtures for plain in-circuit testing may be wired at random,
without care as to where the DFP functions appear. However,
fixtures used for nonvolatile memory applications rely on pre-
dedicated wiring to connect each part of DFP to its specific target
nodes in the DUT.

The inputs of the first 24 channel-driver amplifiers in the DR2p
board can be driven either by the native DR2 digital stimulus
generators, or by signals coming in over the cable from the CCC.
DFP can use these 24 driver circuits directly as needed.

The first 24 channels of a DR2p provide parallel reception so that
DFP can read back multiple bytes from the DUT. The readback
facility provides a ready self-test mechanism for the first 24
channels.

The first 24 channels also provide local enabling of two 8-bit banks
by a DUT-generated strobe. This is used in the handshake mode to
allow the DUT to view two byte-wide groups of DR2p channels as
virtual input ports on the DUT data bus.

The eight high-order channels have relays which provide direct
metallic conduction paths between CCC and DUT. These relays are
individually controlled by the software in the DFP computer. They
are used to force and/or sense the Vpp level (usually 12 volts) or
other voltage levels that cannot pass though digital drive and sense
circuits. Except for the Vpp and RS232 functions, these relays are
reserved for future use or for custom CCC development.

Digital Function Processor User’s Guide-5th Ed.

DR2p Boards

The following illustrations show
* a generic pinout of the DR2p board

» an example of fixture node assignments for flash in free air
operations

» an example of fixture node assignments for serial bootstrap and
handshake operations

Figure 1.3 Generic Pinout of DR2p Board

Vpp O Olsb
o O
o O
o O
Vpp & other o o Port C _
relay-coupled or specialty
signals O O signals
o O
O Omsh
VO O-V
Isb O Olsb
o O
o O
o O
Port B o o Port A
o O
o O
msb O O msb
+vO O-v

Generic pinout of DR2p Board.
Actual functions depend on mode selections.

Digital Function Processor User’s Guide-5th Ed. 1-7

Software Architecture 2

(T a1 (=Y = (ot (o] o 2-3

Using DFP with Z1800-Series TeSterscccccvvuiiereennns 2-5

Software Modulesccoovveviiiiiiiiee e, 2-12

File MainteNanCeccuvvveiiieeeieeeiiiie e e e e e 2-34

DiagnostiC SYStEMceevvviiiiiii e e 2-35

Tools for Custom Developmentcceeevveevieeennnnnnnn. 2-36
Intfroduction

As mentioned earlier, Digital Function Processor software is
completely separate from the main body of Z1800-series system
software, so updates to either software can occur independently of
the other.

The DFP software package includes examples of source code and
library routines. You may use the C compiler as needed to develop
programs that run in the DFP computer, to develop external
programs that are called from in-circuit test pages, to develop Test
Toolbox programs, and to develop occasional software tools such
as format conversions. The C programs provided with DFP are
written for MicroSoft QuickC version 2.5 and Turbo C++ 3.0 for
DOS.

C programs for the main tester PC are normally developed and
compiled on the main tester PC. Those for the DFP computer are
best compiled and debugged on the DFP computer. The main tester
PC can stay in a test step in edit mode while you make changes and
recompile the DFP code.

DFP is controlled by a tester PC COM port over a serial RS-232
link. The test program sends commands to DFP through the AUX
PORT facility.

Software Architecture

As illustrated, one general software system is in place during board
testing for any given custom or flash-in-free-air application. (The
values and choices shown for the PRGMVARS and DigFuncProc
worksheet fields are examples only; they may vary during actual
testing.)

Figure 2.1 Software System Used During Board Testing

18XX Computer Digital Function Processor Computer

| 18XX.EXE

Header PT2\
PRGMVARS:
DFP ON SLAVE.EXE| reads DFP.CFG
sets date
Enable DFP: Yes ; -
Dir Path: c:\TPD\JOB receives job path

Com Chan: AUX 1 sends files / dates

message strings <3
errors

pass fail

no reply

| |

| |

| |

| |

| |

| |

| |

| |

|

} | | sends / receives updates

‘ ‘ as needed

} calls DFPVER EXE i starts XLATE.EXE if srec/image

! . don't match
|

} DlgFuncPr.oc Worksheet } »| receives P command

| Source Dir: MOD1 ‘ starts PTPROG.EXE <

| Arguments: 1%ALPHAG 197 PTPROG.EXE ok

| Time Out: 9 seconds }

|

| |

; > calls DFPCOM.EXE | XLATE EXE[| ecks date of srec/image via

| TPDUJOBMOD1 i IT; translates srec found in INI

| MOD1 |

| DATAL.DAT | TPD\JOB\MOD1

| PTPROG.C | MOD1

} PT2.INI } DATAL1.DAT

| } PTPROG.C

| MOD2 | PT2.INI

} DATA2.DAT \

| PTPROG.C | MOD2

} PT2.INI } DATA2.DAT

\ } PTPROG.C

| ‘ PT2.INI

|| PTBOOT.EXE < }

|

| |

| PTTTALK.EXE | PTPROG.EXE |(typically, a user-created <

} DFPVER.EXE i — program that performs actual

| sends date/time \ hardware functions)

| no response <«—— |

\ sends job path }

| receives files / dates |

\ sends files / dates }

| creates DFPCOM.CFG || |

|

| |

| |

— 7| DFPCOMEXE [sengs: |

| source dir |

\ arguments |

| listens for: \

| |

| |

| |

| |

| |

| |

| |
|

2-2 Digital Function Processor User’s Guide-5th Ed.

User Interaction

User Interaction

Users interact in three primary ways with DFP. In order of
increasing interaction intensity, these are

* as operators testing boards
* as technicians verifying or troubleshooting DFP

» as C programmers developing custom applications

Operators

An operator testing a board will generally be unaware of the
presence of DFP.

Technicians

For verifying and troubleshooting DFP, a test program is provided
as a Z1800-series software subdirectory. Its location is
TPD\PTDIAGS\ICT.TST. In a corresponding subdirectory of
DFP’s disk is a DFP program, PTPROG.EXE, that responds to a
variety of commands aimed at verifying and troubleshooting the
hardware of DFP.

The ICT.TST file on the Z1800-series computer initiates dialog
with DFP and steps through the worksheets; the worksheets send
arguments to tell ptprog which test to run. On the DFP computer,
the ptprog file contains the diagnostic commands and executes
them.

No self-test fixture is needed for DFP self-test.

DR2p boards execute all ordinary Z1800-series diagnostics.
Teradyne provides an additional DFP diagnostic that tests the
CCCs and the DFP portion of the DR2p board.

To run the DFP diagnostic program:

1. Open the 18XX “File” menu, then choose the \TPD directory and
locate the “PTDIAGS” program.

2. Click on the “PTDIAGS” program.

Digital Function Processor User’s Guide-5th Ed. 2-3

Software Architecture

2-4

Custom Application Developers

DFP applications are usually fairly simple and involve only small
amounts (less than 100 lines) of code modification. DFP provides a
number of working examples, fully explained, documented and
instrumented with messages to the auxiliary CRT. Each of the
examples can be modified to suit custom applications.

The usual DFP application consists of the following steps:

recognize the command when it is issued by the main tester PC
take control of the DR2p boards

connect to the DUT

verify silicon signature(s) of flash parts

verify erasure; if not erased, erase

write information, verifying each byte using an algorithm chosen
according to part type

disconnect from the DUT
report result to main tester PC via serial port

return to the waiting state

Digital Function Processor User’s Guide-5th Ed.

Using DFP with Z1800-Series Testers

Using DFP with Z1800-Series Testers

Note: This section describes the use of Revision B.1 of the DFP soft-
ware with Revision F.2a of the 18XX software.

The 18XX interface provides setup and access to the DFP software.
Through the Header variable, DFP, you can enable DFP,

specify the source directory path, and specify communications
channels AUX 1, 2, or 3. The DigFuncProc Device Type available
in the Component Properties block of all sections except
Interconnect enables you to generate a DFP worksheet.

Note: You can have vector guards only in a DFP test that is in a digi-
tal section.

Setting Up DFP

COM Port Setup

Before you can use the DFP hardware, software, or run the
PTDIAG program, the COM port must be set up within the 18XX
environment.

1. Atthe DOS prompt on the Z18XX keyboard, type 18XX __and press
<Enter>

Set Up The AUX Ports

1. Select SETUP from the Main menu and press <Enter>.

2. Select DEVICE and CHANNEL DATA from the Setup menus and
press <Enter>.

If AUX1 is not dedicated to any other functions, assign COM1
or COM2, as selected during the software installation, to AUX1.

3. Select the AUX1 field and type COM1 or COM2 as appropriate.

Note: There must be NOspaces between COM and 1 or 2;
for example, “COM 1” will not work.

If AUX1 is in use, then you must assign the COM port to AUX2
(which will necessitate a number of changes to the PTDIAGS
worksheets) or reassign the AUX1 functions to AUX2.

4. Select the AUX2 field and type COM1 or COM2 as appropriate.

Note: To modify the PTDIAGS program to use AUX2 or AUXS3,
please contact Z-Series Product Support Group.

5. Select the Program Execute Channel block and set it to ON.

Digital Function Processor User’s Guide-5th Ed. 2-5

Software Architecture

2-6

Note:

Press the KEYPAD PLUS (+) key to display the Program Exe-
cute Channel pop-up menu.

Ensure that AUX1 (or AUX2 if used for Digital Function Pro-
cessor) is checked (enabled).

6. Select the Section Execute Channel block and set it to ON.

Press the KEYPAD PLUS (+) key to display the Program Exe-
cute Channel pop-up menu.

Ensure that AUXI (or AUX2 if used for Digital Function Pro-
cessor) is checked (enabled).

7. Select the Step Execute Channel block and set it to ON.

Press the KEYPAD PLUS (+) key to display the Program Exe-
cute Channel pop-up menu.

Ensure that AUX1 (or AUX2 if used for Digital Function Pro-
cessor) is checked (enabled).

8. Verity that the selected \TPD directory is C\TPD

9. Select OK at the bottom of the screen.

10. Select SAVE to save the changes you have made to the DATA
fields.

Set DFP Global Reboot Timeout

Select the Setup menu, then Environment Variables, then DFP
Reboot Delay. Enter 30 seconds. Then, from the main menu, select
the setup menu and save.

On 18XX OS F.2, set the DFP Boot Envirorunent Variable to 30
(seconds) or more to allow time for the DFP to re-boot and enter
Slave mode.

If DFP is run under Win95, you will need to time a reboot and
use THAT time plus half as a safety margin.

If the DFP Boot Environment Variable is set, the GFI entry for
"PTBOOT" is unnecessary, or should be DISABLED or deleted.

Set Up The Serial Port On The 18XX System

The most important aspect of serial setup is that both the 18XX sys-
tem and the DFP system must operate usingdheeserial baud
rate, parity, handshake, and stop bits.

Digital Function Processor User’s Guide-5th Ed.

Using DFP with Z1800-Series Testers

If either the 18XX systenor the DFP system will be running in a
DOS window under Win95, you will need to set up to run at 9600
baud.

Note: The transfer program called DSZ.EXE isnot compatible with
Win95. Therefore, file transfers are not enabled if either sys-
tem has Win95 active. (see below for settings)

If both the 18XX system and the DFP system will be running under
plain DOS (or DOS reboot from Win95), you will be able to run at
57600 baud.

The 18XX OS, Revision F.2a and above, can be setup using the
Setup / Serial menu OR can be overridden using a DFP.CFG file in
C:\PT2.

The 18XX OS Revision F. Ib and oldaust be setup using the
Setup / Serial menu DEFAULT VALUES and be overridden usinga
DFP.CFG file in C:\PT2.

The 57600 setup / serial menu defaults are:

Baud Rate: 57600

Parity: No parity

Word Length: 8

Stop Bits: 1

Handshake: None

Input Delay: 0 milliseconds
Output Delay: 0 milliseconds

The older OS versions expect these exact serial settings in order to
run DFP. For these systems you will need to copy the DFP.CFG file
from the DFP system’s C:\PT2 directory into the 18XX system’s
C:\PT2 directory to override the serial settings to whatever you
need.

Under 18XX OS F. |Ib and earlier, verify that the RTS/CTS hand-
shake box isiot checked on the Serial Port Setup Screen.

The 9600 setup / serial menu defaults are:

Baud Rate: 9600

Parity: No parity

Word Length: 8

Stop Bits: 2

Handshake: None

Input Delay: 109 milliseconds
Output Delay: 109 milliseconds

Digital Function Processor User’s Guide-5th Ed. 2-7

Software Architecture

2-8

SelectOK at the bottom of the screen.

SelectSAVE to save the changes you have made to the DATA
fields.

Return to the 18XX Main Menu.

If either the 21800 PC or the DFP PC is running Windows, the
Com Parameters should match those shown below:

Com 2 Parameters

Baud Rate 9600

Parity No parity

Word Length 8 bits

Stop Bits 2
Protocol

() Xon/Xoff RCV
() Xon/Xoff XMT
() RTSICTS

Input Timeout 109
Output Timeout 109

OK Cancel

If both the 21800 PC and the DFP PC are running DOS, the Com
Parameters should match those shown below:

Com 2 Parameters
Baud Rate 57600
Parity No parity
Word Length 8 bits
Stop Bits 1

Protocol

() Xon/Xoff RCV
() Xon/Xoff XMT
() RTS/ICTS

Input Timeout O
Output Timeout 0

OK Cancel

Digital Function Processor User’s Guide-5th Ed.

Using DFP with Z1800-Series Testers

Setting up DFP in PRGMV ARS
To set up DFP in the Header/PRGMVARS:

1. Click on the DFP field in PRGMVARS/General Variables

The following window appears.

Digital Function Processor

Enable Digital Function Processor
Source File Directory path

Communication channel Aux 1
DFP reboot timeout 30

Activate DFP

2. Clickon No in the Enable Digital Function Processor field to
bring up the pop-up box, and select Yes.

3. Inthe Source File Directory path field, enter the complete path to
the source directory path.

The path name is almost always the same as the board directory.

4. Inthe Communication channel field, select the Auxiliary channel
which contains the communications port for the DFP channel.

This should have been specified in the Setup/Data menu.

The DFP reboot timeout should be set by manually rebooting,
noting the time required for rebooting, then adding 50% to that
time.

When you have finished setting up DFP, the DFP PRGMVARS
window should look similar to the following.

Digital Function Processor

Enable Digital Function Processor
Source File Directory path c:\tpd\jobl
Communication channel Aux 1
DFP reboot timeout

Activate DFP

Digital Function Processor User’s Guide-5th Ed. 2-9

Software Architecture

Generating the DFP Worksheet
To generate the DFP worksheet:

1. Inthe test page Component Properties block, click on the Device
Type field.

A pop-up window appears listing the available device types.
2. Select DigFuncProc .
3. Select Generate Test from the Tools menu.

The Digital Function Processor worksheet appears. The follow-
ing example shows a DFP test.

Device Types

DigFuncProc
Gray Code
Vector Cluster
Vector Image
Vector Template

Component Properties {11141
ID: Ul (DFP) Name: 28F256 Desc: Program EEPROM

Device Type: DigFuncProc

Test Properties {111

Options Indicators
Pre Post Cntrl ‘Update DFPY

Test Type: DigFuncProc~ Source Dir:U1 Time ou91 seconds
Arguments:
Result Text

Worksheet Fields

The DFP worksheet fields enable you to manage DFP operation.
The Result Text area displays messages sent back to the 18XX by
PTPROG.EXE.

2-10 Digital Function Processor User’s Guide-5th Ed.

Using DFP with Z1800-Series Testers

When you click on Update DFP, the most recent version of any file
in the directory specified by the Source Dir field will overwrite
identically named files on both computers. Update DFP will call
DFPVER.EXE.

With DigFuncProc as the Device Type, the only Test Type
available is DigFuncProc.

Source Dirrefers to the subdirectory of the directory specified in
the Header/PRGMVARS. The field takes a DOS directory name of
eight characters. This directory contains the source files for the
DFP test to be run from this worksheet. These files include
PTPROG.EXE, PT2.INI, and any other files associated with this
DFP test.

Time outenables you to specify the Com port timeout. If there is no
activity on the Com port for the specified period of time, an error
message is generated, and you will get a test failure.

The Argumentdield enables you to send arguments to
PTPROG.EXE.

After you have executed the DFP test, resulting messages from
PTPROG.EXE appear in the Result Text box.

After your DFP test runs, the DFP worksheet will look similar to
the following example.

Component Properties {11l
ID: Ul (DFP) Name: 28F256 Desc: Program EEPROM

Device Type: DigFuncProc

Test Properties {1111
— Options— — Indicators —
«Update DFP»

Pre Post Cntrl

Test Type: DigFuncProc~ Source Dir: Ul Time out: 9 seconds
Arguments: -t -v%ALPHA7Y
Result Text

U1 load datafile 1
U1 load datafile 2
U1 failed to load datafile 3

Digital Function Processor User’s Guide-5th Ed. 2-11

Software Architecture

Software Modules

Directory summaries for 18XX system software and DFP software
are illustrated below.

Figure 2.2 DFP Directory Summary for Z1800-Series System Software

E‘

-IAUTOEXEC.BAT| L‘ CONFIG.SYS | L‘ PT2\ | | TPD\ |

PTTALK.EXE

1

| PTDIAGS\ |

ICT.BCK

DSZ.EXE

ZRECEIVE.BAT

ICT.TST
ICT.NDX

ZSEND.BAT

DFPVER.EXE

PTVER.EXE

PTBOOT.EXE

DFPCOM.EXE

PCOM.EXE

PCOM.CFG

DEVICE.DAT

FORMAT.DAT

DFP.CFG (optional)

SOURCE\

CC.BAT

XLATE.C

PTPROG.C

—| PT2LIB\
TPT2.LIB

PT2.LIB

PT2.H

EXAMPLES\

2-12 Digital Function Processor User’s Guide-5th Ed.

Software Modules

Figure 2.3 DFP Directory Summary for DFP System

C:\

L PT2\ TPID\
I

I

AUTOEXEC.BAT L CONFIG.SYS

SLAVE.EXE

PTDIAGS\

I

ASYNC.SYS

PT2\

XLATE.EXE

PTPROG.EXE

DSZ.EXE

PTPROG.C

H PT2.CFG

H PTTALK.EXE

H ZRECEIVE.BAT

ZSEND.BAT

I

H PTPROG.EXE

VALUES.DAT

I

I

FAIL. TMP

DFP.CFG

I

— SOURCE\

CC.BAT

XLATE.C

PTPROG.C

— PT2LIB\

TPT2.LIB

PT2.LIB

PT2.H

EXAMPLES\

Digital Function Processor User’s Guide-5th Ed. 2-13

Software Architecture

2-14

Standard Tools and Files

SLAVE.EXE
(C:\PT2\SLAVE.EXE on the DFP system)

AUTOEXEC.BAT starts SLAVE.EXE on the DFP computer. You
can also start SLAVE.EXE via the DFP keyboard from the
command line. SLAVE.EXE’s purpose is to interpret commands
from the 18XX computer and perform functions which include job
identification, DOS commands, file transfer and updates, file
translations via XLATE.EXE, and algorithm execution.

SLAVE.EXE has no required arguments. After it is running, it
accepts commands from DFP’s serial port through a null modem
cable.

To see SLAVE.EXE's optional arguments, type “SLAVE” or
“slave” followed by a blank-space character, then press the Return
or Enter key.

A command to SLAVE.EXE is an ASCII string consisting of an
identifying character (uppercase only) followed by command
arguments and terminated by a carriage return (Oxd). Arguments
are separated by spaces, and there is no space between the
identifying character and the first argument.

Pressing Esc on the DFP computer’s keyboard ends the execution
of SLAVE.EXE. Restart SLAVE.EXE after you perform any DOS
commands on the DFP computer.

The commands SLAVE.EXE will accept are listed below, then
described in detail in the next section.

*V (Version)

*D (Date and Time)

*J (Job or board-level directory)
*$ (Send module directories)

*R (Receive module directories)
*P (Program - start PTPROG)

*F (Failure flags)

L (Location of other data)

+C (Configuration)

*X (Execute DOS command)

*Q (Quit)

«| (Initialize DR2Ps)

T (Transfer files check)

*M (Master OK)

Digital Function Processor User’s Guide-5th Ed.

Software Modules

Command Descriptions for SLAVE.EXE

V command: Ensures the software on the 18XX computer is the
same revision as that on the DFP. DFPVER.EXE issues the
command from an 18XX in-circuit PRGMVARS header test step.
This command has no arguments. SLAVE.EXE returns the ASCII
string defined as VERSION in PT2.H.

D command: Sets the date and time on the DFP computer.
DFPVER.EXE issues the command and sets the date and time to
match the 18XX computer. This command has six arguments and
all must be present with one space between them:

D<year> <month> <day> <hour> <min> <sec>
Example:
D1994 04 1513 30 12

SLAVE.EXE returns the following values defined in PT2.H:

DATE_ERROR if date could not be set.
TIME_ERROR if time could not be set.
DATE_SET if command was successful.

J command: Tells SLAVE.EXE where the module directories
reside. Multiple modules can be associated with an in-circuit test
program. This path is duplicated on the DFP computer. The full
path name is needed, including the drive. The path is not required to
be the same as the path for the in-circuit test. Drive names are
usually set up during installation of the DFP software; if none are
set up during installation, only drive C: is available. Currently DFP
supports drives C through F. These are directories substituted on
the C drive. More can be added as needed.

Example:
Jc:\tpd\ptdiags
Slave returns the following values defined in PT2.H:

SLAVE_OK if SLAVE.EXE successfully created the
directory.

INVALID_DRIVE if the drive does not exist.

INVALID_JOBPATH if SLAVE.EXE was unable to change to
the job path directory.

S command: Starts the process for SLAVE.EXE to send module
directory contents to the 18XX computer. You can add an optional
V (verbose) to send ZMODEM standard error messages to the DFP
monitor. DFPVER.EXE issues the S command from a Header test
step in the in-circuit test program. SLAVE.EXE returns the
following value defined in PT2.H:

Digital Function Processor User’s Guide-5th Ed. 2-15

Software Architecture

2-16

SLAVE_OK SLAVE.EXE received command.

SLAVE.EXE now searches the job directory for all module
subdirectories. It is assumed that only DFP-related information
resides on the DFP computer. Upon finding a directory, slave sends
the 18XX computer an “S” followed by the directory name.
SLAVE.EXE then changes to the module directory and starts
zsend.bat. After zsend.bat is complete, a sync is necessargure

the buffers are flushed in case ZMODEM did not finish cleanly.
This involves both sides trading a single character “H” until a
predetermined number is read. Both computers then send a
terminating character “I". The port is then read until the terminating
character is found. SLAVE.EXE now changes back to the job
directory and continues the search. When all directories have been
transferred, a single S is sent to inform DFPVER.EXE that
SLAVE.EXE is finished. SLAVE.EXE returns the following values
defined in PT2.H:

SLAVE_OK all is well.
DSZ ERROR unable to complete ZMODEM transfer.

R command: Starts the process for SLAVE.EXE to receive

module directory contents from the 18XX computer; it is almost the
same as the S command described previously. DFPVER.EXE sends
SLAVE.EXE an R command followed by a module directory

name. A V can be appended for ZMODEM verbose mode.
SLAVE.EXE will create this directory, change to it, and start
ZRECEIVE.BAT. A sync is performed and XLATE.EXE is started

in this directory. Any needed translation is done at this time.
SLAVE.EXE returns the following values defined in PT2.H:

SLAVE_OK all is well.
INVALID_VERSION unable to change to this directory.
INVALID_JOBPATH unable to change to this directory.

XLATE_DONE translate complete.
XLATE_ERROR error translating files.
DSZ ERROR unable to complete ZMODEM transfer.

P command:Sent to SLAVE.EXE from an in-circuit test step of
type DigFuncProc. The P is followed by a module directory and
any arguments to pass to PTPROG.EXE. SLAVE.EXE then
changes to the module directory and starts PTPROG.EXE.
PTPROG.EXE is started with “-s” as the first argument, telling
ptprog that it was started by slave and not from the command line.
After ptprog finishes, slave opens the file c:\pt2\fail.tmp and reads
an integer from this file. This integer is the failure flag that the F
command (see below) returns. SLAVE.EXE immediately removes
the fail.tmp file. SLAVE.EXE returns the following values defined
in PT2.H:

Digital Function Processor User’s Guide-5th Ed.

Software Modules

P_DONE ptprog exited error-free.
PTPROG_ERROR slave was unable to start ptprog.

A PTPROG.EXE exit status of zero is considered error-free. If
PTPROG.EXE exits with a nonzero, SLAVE.EXE returns that
value. There are several defined error codes associated with
PTPROG.EXE; these are included in the listing of PT2.H in a later
chapter.

F command: Sent by PCOM.EXE (the predecessor to
DFPCOM.EXE) to request the failure flags set by the last
PTPROG.EXE to run. The flags are an integer that was previously
read from the file c:\pt2\fail.tmp.

Note: The F command is not used with the 18XX DigFuncProc work-
sheet.

L command: Provides a means to send SLAVE.EXE data that may
not be available when the P command is sent. % MEAS data from a
capacitor test is one example. The sixteen locations (1-16) available
to store this data are identified by a number following the L and
then the data. The complete string (including the L) is saved to a
file called c:\pt2\values.dat . Each string can be up to 600 characters
in length. The first location is stored at the beginning of this file and
the rest are stored at multiple offsets of 600.

“L[Name] <arg> <arg>" where [Name] is an integer from 1
through 16.

Example:
L1 %MEAS

Note: The L command cannot be sent by the 18XX DigFuncProc
worksheet; it is generally sent via an 1/O string in the pre/post
options of a regular 18XX worksheet.

C command: Sent by DFPVER.EXE. Upon receiving this
command, SLAVE.EXE opens the configuration file
C:\PT2\PT2.CFG. SLAVE.EXE reads the configuration string and
returns it.

X command: Executes any DOS command following. This
commandcan be sent to SLAVE.EXE from PTTALK.EXE.
SLAVE.EXE always returns the value INVALID _COMMAND
defined in PT2.H. Use caution with this command.

Q command: Terminates SLAVE.EXE. Before terminating,
SLAVE.EXE will return the value TERMINATE defined in PT2.H.

Digital Function Processor User’s Guide-5th Ed. 2-17

Software Architecture

2-18

Note:

Invalid commands sent to SLAVE.EXE cause it to return the value
INVALID COMMAND defined in PT2.H.

| command: Initializes the DFP Channel Control and DR2p cards.

T command: Get file transfer options. This command causes the
DFP to send the file transfer options, stored in the DFP.CFGfile, to
the 18XX system.

M command: Displays “Status = Master OK” on the DFP
Terminal.

XLATE.EXE
(C\PT2\XLATE.EXE on the DFP system)

XLATE.EXE is started from SLAVE.EXE. on the DFP computer.
You can also start it from the DFP command line using the
keyboard.

XLATE.EXE translates your data files into a form directly usable
by DFP. XLATE.EXE accepts Motorola S-records or Intel hex
records, the two most common PROM programmer formats, and
other translation types (detailed in the “format.dat” section later in
this chapter). “No-translation” is also acceptable.

XLATE.EXE checks the date of data and image files to determine
if updating the translated files is necessary. XLATE.EXE will
translate the data record(s) listed in PT2.INI file. It gives files it
creates the same name as the data record file, with the extension
“.img” replacing the data record extension. The data record is
checksummed, sorted, and translated into a binary image file with
the address holes filled appropriately. XLATE.EXE updates the
image file date and time to match the data record file.

The translation types are detailed in the “FORMAT.DAT” sec-
tion on page 2-32; board addressing is discussed in the
“PT2.INI” section on page 2-31.

DSZ.EXE
(C:\PT2\DSZ.EXE on the DFP system)

DSZ.EXE is a commercial ZMODEM program from Omen
Technology. It implements the ZMODEM file transfer protocol.
DSZ features the ZMODEM-90™ extensions including ZMODEM
compression and MobyTurbo™ accelerator.

Warning: DSZ.EXE is not compatible with Windows95, so file
transfers are not available under Windows95’s DOS shell.

Digital Function Processor User’s Guide-5th Ed.

Software Modules

See page 2-23 for information about DFP.CFG’s
TRNSFER_FILES and TRNSFER_WIN_FILES values.

The ZMODEM file transfer protocol provides reliable file and
command transfers with complete END-TO-END data integrity
between application programs. DSZ’s 32-bit CRC protects against
errors that are not detected by both “error free” modems and the
most advanced networks.

PTTALK.EXE
(C\PT2\PTTALK.EXE on both the DFP and 18XX computers)

PTTALK.EXE is started with a command from the Z1800-series
computer keyboard. It enables a communications link to the
SLAVE.EXE via the Z1800-series keyboard; thus it accepts such
commands as V (ver), D (date), and J (job path). It is intended as a
debug tool only. Pressing Esc or Ctrl-C ends a PTTALK.EXE
session.

PTTALK.EXE can be started on the 18XX computer to verify
communication; typing “PTTALK.EXE ?” will display the
command usage.

To verify communication between the machines using
PTTALK.EXE:
1. Make sure that SLAVE.EXE is running on the DFP computer.

2. Atthe 18XX system’s DOS prompt, enter pttalk comX , where “X”
is the com port number (such as 1 or 2), then press Enter.

3. Atthe 18XX computer, type V , then press Enter.

The current DFP software version will be returned and dis-
played on the 18XX screen (see the section covering the
SLAVE.EXE V command earlier in this chapter).

4. Press Esc to exit.

PTPROG.EXE

(C\PT2\PTPROG.EXE and
C\TPD\PTDIAGS\PT2\PTPROG.EXE on the DFP computer)

The DigFuncProc worksheet on the 18XX sends the P command
(described earlier in this chapter) to SLAVE.EXE. SLAVE.EXE
then starts PTPROG.EXE on the DFP computer. Multiple ptprogs
can exist; the one that runs depends on file hierarchy - directory,
path, and so on.

PTPROG.EXE is responsible for a number of activities, including
loading nonvolatile memory with variable data or with data stored

Digital Function Processor User’s Guide-5th Ed. 2-19

Software Architecture

2-20

Note:

in an image file. It also passes error messages and the pass/fail
information to the DigFuncProc worksheet; see also the section
covering DFPCOM.EXE later in this chapter.

As a program written by the user, PTPROG.EXE can easily be

customized for a particular application. Tasks that can be specified

in PTPROG.EXE include:

* Opening com ports

» Getting and checking program arguments

» Opening and reading PT2.INI files

* Opening and reading data files

 Setting up CCC/DR2P cards

» Performing device operations appropriate to the application
(erasing, programing, verifying, and so on)

» Writing pass/fail data to 18XX

* Closing all files and ports

* Releasing DRs

* Exiting the test

A PTPROG.EXE exit status of zero is considered error-free. If
PTPROG.EXE exits with a nonzero status, SLAVE.EXE returns

that value. There are are several defined error codes associated with
PTPROG.EXE; these are included in the listing of PT2.H in a later
chapter.

See the examples for custom applications later in this manual;
others may be available from Teradyne.

ZRECEIVE.BAT

(C:\PT2\ZRECEIVE.BAT on both the DFP and 18XX computers)
Used only under MS/DOS, not under Windows operating systems.

This DOS batch file contains the necessary commands and
arguments to receive files using ZMODEM file transfer protocol.
This file is used on both the 18XX computer and the DFP
computer.

ZSEND.BAT
(CA\PT2\ZSEND.BAT on both the DFP and 18XX computers)
Used only under MS/DOS, not under Windows operating systems.

This DOS batch file contains the necessary commands and
arguments to send files using ZMODEM file transfer protocol. This
file is used on both the 18XX computer and the DFP computer.

Digital Function Processor User’s Guide-5th Ed.

Software Modules

ASYNC.SYS
(C:\PT2\ASYNC.SYS on the DFP computer)

Async.sys is a device driver that manages the serial ports on the PC
and enables interrupt driven and buffered communication. Simple
four or eight port extension boards (e.g., digiboard) can be used in
conjunction with the standard com1 and com2 hardware usually
found in PCs. Interrupts are shared among the ports on one board;
i.e., it is not possible to have the standard com2 and a digiboard
share interrupt 3. The driver supports up to eight devices.

The driver installs through the CONFIG.SYS interface on both the
18XX computer and the DFP computer and has the following
command line syntax:

device=async.sys COM:n,i,p,[ibuf],[obuf]; COM:n,1,P,[ibuf],[obuf]; ...etc

where
*n is the port number in the range of 1 to 8
*i is the IRQ number in the range of 2to 7
*p is the base port address in hex
sibuf is the input buffer
*obuf is the output buffer
sspaces are optional to improve readability

Note: The buffer sizes are not optional for DFP. The values of 1024
for the input buffer and 1024 for the output buffer must be
used with DFP.

PT2.CFG

(C\PT2\PT2.CFG on the DFP system)
PT2.CFG is the predecessor to DFP.CFG.

DFP.CFG
(C:\PT2\DFP.CFG on the DFP system)

DFP.CFG contains system/DFP configuration and serial port
information.

DFP.CFG is created on the DFP computer during installation of the
DFP system; it can optionally be created on the Z18XX system.
DFP.CFG should include which CCC boards are installed in the
DFP computer and which node numbers (DR2P cards) are
associated with each CCC. The entry in the file is one line in a
group labelled “[General]”.

Digital Function Processor User’s Guide-5th Ed. 2-21

Software Architecture

2-22

Example:
CCC=0,192,1,224

The connection from the CCC to the DR2p board is defined by the
first node number on the DR2p. CCC 0 is connected to the DR2p at
node 192. CCC 1 is connected to the DR2p at node 224.

If you add DR2p’s after installation, or if you move any DR2p’s to
new locations in the test head cage, you should edit PT2.CFG to
match the new current status of the DFP system.

Example DFP.CFG file:

[Serial]

SerVerbose=YES # else NO - output DFP.CFG serial settings?
(Default = Yes)
SerBaud=9600 # else 110,...,9600,19200,38400,57600
(DOS Default = 57600, WINDOWS Default = 9600)
SerParity=None # else Odd, or Even (Default = None)
SerDataBits=8 # else 5,6, or 7 (Default = 8)
SerStopBits=2 # (DOS Default = 1, WINDOWS Default = 2)
SerProtocol=NONE # else XRCV,XXMT,XALL,HNONE,HXRCV,HXXMT,HXALL
(Default = NONE (ie uses RTS/CTS)
Serlwait=100ms # else 0-10000ms (resolution is 50ms)
(Default = I00ms)
SerOwait=100ms # else 0-10000ms (resolution is 50ms)
(Default = 100ms)

[General]

GenVerbose=Yes #else NO-output dfp,cfg general ettings?
CCC=0,192,1,224 # else any combination of

<ccc number>,<start node>.

Note: ccc #'s should start

from 0 and be consecutive.
TRNSFR_FILES=Yes # Else No.

If No - Don't transfer files

during updateDFP.
TRNSFR_WIN_FILES=No # If No - Don't transfer files

#duringupdateDFP if either system
is running Windows(OS = WINDOWS)

VALUES.DAT
(C:\PT2\VALUES.DAT on the DFP system)

VALUES.DAT is created by SLAVE.EXE. Values.dat resides in
the pt2 directory and contains the arguments/data that are sent to
SLAVE.EXE via the L command. This data is accessible to all
programs that reside on the DFP computer.

Digital Function Processor User’s Guide-5th Ed.

Software Modules

@rem Borland Turbo C

FAIL.TMP
(C:\PT2\FAIL.TMP on the DFP system)

If PTVER.EXE and an old-style mixed-mode worksheet are

in use, Fail.tmp is created by PTPROG.EXE. It contains a failure
flag integer and is used to return failure information to
DFPCOM.EXE. SLAVE.EXE reads and deletes fail.tmp after
PTPROG.EXE returns control to SLAVE.EXE. The failure flag
integer is the value returned to DFPCOM.EXE when the F
command is sent to slave. Each binary bit in this integer represents
a flag. A failure is bit = 1.

CC.BAT

(C:\PT2\SOURCE\CC.BAT on both the DFP system and the 18XX
system)

Included in the DFP documentation is a sample batch file for
command line compiling for Borland Turbo C, Microsoft Quick C,
and Microsoft Visual C/C++.

It can be found on the DFP computer under pt2\source. Copy the
file to whatever directory you need for compiling your ptprog.c.

To use the batch file, simply “rem” the libraries you DO NOT wish
to use, then delete the “rem” for the library you DO wish to use
(However, leave the comment for identifying compiler (library)
with a rem).

The example below is for use with Turbo C:

tcc -ms -a- -f -2 -DTURBO -lc:\pt2\pt2lib -Lc:\pt2\pt2lib %1.c tpt2.lib

@rem Microsoft Quick C

@rem qcl /Zp /AL /FPi /W3 /G2 /c %1.c
@rem glink /NOD /ST:4096 %1.0bj,,NULL,pt2+llibce

@rem Microsoft Visual C/C++

@rem cl /Zp IAL IFPi /W3 /G2 /c %1.c
@rem link /NOD /ST:4096 %1.0bj,,NULL,pt2+llibce+oldnames,,

Using the Turbo C environment on the DFP computer:
If you opt to use the Turbo C library and have loaded it on your

DFP computer, you may wish to use the TC environment to debug
your ptprog.c. To use the environment:

1. Edit the AUTOEXEC.BAT, removing the smartdrv extensions.

2. Reboot the DFP computer.

Digital Function Processor User’s Guide-5th Ed. 2-23

Software Architecture

2-24

Note:

3. Enter the TC environment.

4. Under “Options:Directories:Include” add C:\PT2\PT2LIB

5. Under “Options:Directories:Libraries” add: C:\PT2\PT2LIB

6. Under “Options:Compiler: Code Generation” add to Define:
TURBO

7. Under “Project” open a project.

8. Add to your project the PTPROG.C file and the TPT2.LIB file.

9. Under“Run: Arguments”add -k, -p, or any arguments needed to
run your PTPROG.EXE from the DFP keyboard.

Now you are ready to open the PTPROG.C file and run and edit
as needed.

PT2.LIB and TPT2.LIB

(CAPT2\PT2LIB\PT2.LIB and TPT2.LIB on both the DFP system
and the 18XX system)

The library files are a collection of functions used for development
of the DFP system. They can be used to create a custom DFP
application and include functions for communication with the
channel control card/driver receiver board, the async driver, and the
DFP system. The functions are listed and described in the PT2.H
listing included in a later chapter of this manual. The paths are
pt2\pt2.lib and pt2\tpt2.lib on either the DFP or 18XX computer,
depending on the options you chose at installation.

Pt2.lib is compiled for use with Microsoft C-language products,
and tpt2.lib is compiled for use with Borland Turbo C-language
products.

PT2.H

(CAPT2\PT2LIB\PT2.H on both the DFP system and the 18XX
system)

Pt2.h is a header file that contains the prototype declarations for the
DFP system. Include PT2.H in your custom program in order to use
the DFP library.

The content of the PT2.H file appears in the “PT2.H Listing”
chapter of this manual.

Digital Function Processor User’s Guide-5th Ed.

Software Modules

DFPVER.EXE
(C:\PT2\DFPVER.EXE on the 18XX system)

DFPVER.EXE is started from the 18XX program Header via
pgmvars. It will run automatically the first time you enter the 18XX
program in Run mode.

DFPVER.EXE creates the file C:\PT2\DFPCOM.CFG which
dfpcom uses to identify the com port to use. It also sends several
basic commands to SLAVE.EXE on the DFP computer. It opens
communications to DFP via SLAVE.EXE, checks on the version of
SLAVE.EXE, and allows job identification and file transfers. Once
all the files on the 18XX are updated to the latest versions,
DFPVER.EXE terminates, and the 18XX program continues.

If SLAVE.EXE does not respond or receives an incorrect response
when communications are first opened, DFPVER.EXE will reboot
the DFP computer and try one more time. DFPVER.EXE can also
be run from the DigFuncProc worksheet via the UPDATE field
when in 18XX debug mode; the worksheet's UPDATE field calls
this function.

PTVER.EXE
(CAPT2\PTVER.EXE on the 18XX system)
PTVER.EXE is the predecessor to DFPVER.EXE.

PTBOOT.EXE
(CA\PT2\PBOOT.EXE on the 18XX system)

PTBOOT.EXE is started from a cold boot via the Z1800-series
system software’s AUTOEXEC.BAT or from the Z1800-series
system’s keyboard. After PC I/O has been loaded, it can also be
called via dfpver if the DFP computer does not respond to
DFPVER.EXE.

PTBOOT.EXE toggles a built-in system relay which causes a
hardware reset of the DFP computer. On some DFP systems, one of
the RAB option relays is used. On other systems, the power supply
controller provides the DFP reset relay.

If you start PTBOOT.EXE with no arguments, PTBOOT.EXE
announces itself and there is a 30-second delay before
PTBOOT.EXE exits. Any arguments given to PTBOOT.EXE will
cause silent operation and no delay.

Occasional crashes can be expected in an embedded system
running customer-developed code, especially during program

Digital Function Processor User’s Guide-5th Ed. 2-25

Software Architecture

development. DFP’s cold boot facility provides a defense against
this inconvenience.

If, on the initial run of the in-circuit board test program, dfpver in
the Z1800-series computer cannot establish communication with
slave in the DFP computer, it presumes a crash or other software
hangup. Dfpver then executes ptboot.

The custom programmer should identify and correct the causes of
such crashes prior to putting the custom software in service. DFP’s
CRT facility allows you to connect a display device, which the
programmer can use to identify the custom software’s progress
prior to the crash.

DFPCOM.EXE
(C:\PT2\DFPCOM.EXE on the 18XX system)

DFPCOM.EXE is automatically initialized via the DigProcFunc
18XX worksheet; it is responsible for passing and receiving
information between the 18XX DigProcFunc worksheet and the
DFP computer. DFPCOM.EXE reads the file C:\PT2\PCOM.CFG
for the com port to use, then initiates communications with
SLAVE.EXE running on the DFP.

DFPCOM.EXE passes to SLAVE.EXE the source directory (board
subdirectory where the PTPROG.EXE actually resides) found in
the source field of the DigProcFunc worksheet. Any arguments
found in the argument field of the DigFuncProc worksheet are also
passed to SLAVE.EXE at this time.

DFPCOM.EXE listens for and processes several types of messages.

User-Programmable Messages
There are three types of messages/define statements the user can

program into the ptprog.c program:

KEEP_ALIVE: The DFPCOM.EXE can timeout. The timeout (in
seconds) is set by the user in the Timeout field of the DigFuncProc
worksheet. The default timeout is 9 seconds. PTPROG.EXE
running on the DFP computer may send a KEEP_ALIVE message
to DFPCOM.EXE, resetting the timer. Should dfpcom timeout, the
test step will issue an 18xx Test Step Error instead of an 18xx
Failure. This message is sent to DFPCOM.EXE from the
PTPROG.EXE test via the pt2lib function keep_alive():

keep_alive(KEEP_ALIVE);

PASS/FAIL: The PASS or FAIL message is passed to
DFPCOM.EXE from the PTPROG.EXE running on the DFP
computer. This will be relayed to the 18xx program once P_DONE

2-26 Digital Function Processor User’s Guide-5th Ed.

Software Modules

is received from SLAVE.EXE (see P_DONE below). This message
is sent to DFPCOM.EXE from the PTPROG.EXE test via the
pt2lib function keep_alive():

keep_alive(handle,PASS); or
keep_alive(handle,FAIL);

DFP_18XX_MSG: The DFPCOM.EXE can receive message
strings from the PTPROG.EXE running on the DFP. These
messages can be used for a variety of purposes, including
debugging ptprog.c programs or indicating which device failed if
more than one device is being tested. The message strings are
displayed in the Result Text field of the DigFuncProc worksheet in
18xx debug mode. The messages can also be printed to the CRT
and printer during 18xx run mode if the Test Page All print option
is enabled under the DigFuncProc worksheet Cntl option. This
message is sent to DFPOM.EXE from the PTPROG.EXE test via
the pt2lib function send18xxMsg():

send18xxMsg(handle,DFP_18XX MSG,“Ul FAILED");

Note: Do NOT CONFUSE this message string with the PASS/FAIL
message above. This is a message string handler only, not the
method to indicate pass/fail to the 18xx program.

DFP_18XX_ERR_MSG: This message string is a variant of the
“DFP_18XX_MSG” message described above; however, the string
is displayed briefly in a little red box overlaid on the DigFuncProc
page, instead of in the Result Text field. Also these messages CAN
NOT be printed out or saved, and therefore they are ONLY meant
for debugging the user PTPROG.EXE program, and are NOT
intended for passing errors from the final PTPROG.EXE program
that the user wants printed out if the teststep fails.

send18xxMsg(handle,DFP_18XX_ERR_MSG,“Can’t open data file”);

Note: This error message will NOT end the DigFuncProc test. This is
a message string handler only. An error indication to end the
DigFuncProc test must come via the SLAVE.EXE to ensure
SLAVE.EXE becomes active again and the DFP itself hasn’t
hung.

Automatic messages
Two other types of messages are taken care of by the SLAVE.EXE

program when PTPROG.EXE terminates. These messages are
NOT meant for the user to program:

P_DONE: When PTPROG.EXE terminates, SLAVE.EXE will
pass the P_DONE message to DFPCOM.EXE indicating that the
PTPROG.EXE successfully returned control to SLAVE.EXE and

Digital Function Processor User’s Guide-5th Ed. 2-27

Software Architecture

2-28

Note:

consequently the DFPCOM.EXE will now pass the PASS/FAIL
information to the 18xx program and the 18xx program will
continue.

PTPROG_ERROR: If the PTPROG.EXE program terminated
early with an error message, SLAVE.EXE will pass the error
message to DFPCOM.EXE, indicating PTPROG.EXE successfully
returned control to SLAVE.EXE. DFPCOM.EXE will briefly

display an error box on the 18xx screen with either a defined
message or a message number, then terminate the 18xx test step.

If the user wants to print the error, the user needs to send the
DFP_18XX_MSG (NOT the DFP_18XX_ERR_MSG - see both
above) just before the PTPROG.EXE calls either exit() or uses
a return (to SLAVE.EXE) with the error.

PCOM.EXE
(CAPT2\PCOM.EXE on the 18XX system)

PCOM.EXE is the predecessor to DFPCOM.EXE.

DFPCOM.CFG
(C:\PT2\DFPCOM.CFG on the 18XX system)

The file DFPCOM.CFG is created by DFPVER.EXE when the
18XX test program is run. It contains the com port argument given
to DFPVER.EXE and is used by the DigFuncProc worksheet (via
DFPCOM.EXE) to identify the com port to use when
communicating with the DFP computer. It also contains error/no-
error indications of successful execution of DFPVER.EXE.

Example: COM1 noerror

PT2.INI
(C:\TPD\JOB\MOD\PT2.INI)

A PT2.INI file is used to identify a subdirectory as a DFP directory
containing DFP test files. The PT2.INI file contains information
used by XLATE.EXE and by the application’s PTPROG.EXE. The
entries are optional depending, on the application’s need; however,
the most commonly used entries are the L, M, and R entries: L =
Local device, M = Manufacturer code & id, and R = Remarks (user
remarks and information). Below is a PT2.INI file example,
followed by explanations for each entry.

Digital Function Processor User’s Guide-5th Ed.

Software Modules

Example PT2.INI file:

L,U1,28F010,ul.dat,87,131072,0,1
M,89,B4

R, format 87 = Motorola S record type
R, ul.dat update 3-2-95

LOCAL entry : The L entry is for a specific device. One PT2.INI

file can have several L entries, indicating the devices are to be
tested together, as in the case of a common address bus. For custom
work only the first eight fields need to be entered, with each field
separated by a comma. These first eight fields are:

: L (tag for device entry)

: device id name

. actual device type

: data record filename

. data record format type

: memory size

: bus position

- fill undefined locations with either O's or 1's
Example: L,U1,28F010,ul.dat,87,131072,0,1

O~NOOTHSA WN PR

L = local tag

Ul= customer chip ID

28F010 = device type is a 28F10

ul.dat = data record filename is 66e.ptp

87 = data record format type is Motorola S record
131072 = memory size

0 = bus position is 0

1 = fill undefined locations with 1

MANUFACTURER entry: The manufacturer code and
manufacturer id are entered in sets of two. The entry covers all
possible sets allowed for the devices entered in the PT2.INI file.
The minimum number of fields for a M-tag entry is three fields.

1: M (tag for manufacturer code & id entry)
2: manufacturer code

3: manufacturer id

4: manufacturer code

5: manufacturer id , and so on...

Example: M,89,B4

M = manufacturer tag
89 = manufacturer code (hex) for intel 28F010
B4 = manufacturer id (hex) for intel 28F010

Digital Function Processor User’s Guide-5th Ed. 2-29

Software Architecture

2-30

REMARKI/S entry: Remarks are entered to allow user information
to be recorded. There can be multiple R-tag entries in a PT2.INI
file.

1: R (tag for remark/s)
2: remark string
Example:

R, format 87 = Motorola S record type R, ul.dat update 3-2-95

FORMAT.DAT
(C:\PT2\FORMAT.DAT on the 18XX system)

FORMAT.DAT documents the allowable data record formats and
contains data record format information used by XLATE.EXE.

FORMAT.DAT has two fields for each entry. The fields are
separated by a comma, with no blank spaces.

Example:
Motorola_Exormax,87

In the example above, Motorola_Exormax is the data record format
name and 87 is the data record translation format code.

XLATE.EXE currently allows the following formats:

No_translation,0
Motorola_Exorciser,82
Intel_Intellec_8/MDS,83
Motorola_Exormax,87
Intel_MCS-86_Hex_Object,88
Jedec_format(Full),91
Jedec_format(Kernel),92
Motorola_32bit(S3_record),93

Digital Function Processor User’s Guide-5th Ed.

File Maintenance

File Maintenance

A Z1800-series tester with DFP consists of two computers and two
hard disks. To keep the information current in both hard disks, DFP
automatically runs, as needed, a software system based on the
commercial ZMODEM standard (as described in the section
covering the DFPVER.EXE program, above).

Note: This is not true when DFP or 18XX are operating under
Windows.

The ZMODEM software ensures that files updated in one computer
are automatically updated in the other. Thus if a file relevant to
DFP is updated in the main PC, DFP automatically receives the
updated copy the next time it is needed. By the same token, files
edited on the DFP computer during custom development will be
automatically copied into the appropriate place on the main PC
when commands involving them are executed.

Because of this feature, it is not necessary to make regular backups
of the DFP computer’s hard disk. Backing up the host Z1800-series
computer also creates backups of the DFP user files.

Digital Function Processor User’s Guide-5th Ed. 2-31

Software Architecture

Diagnostic System

2-32

The diagnostic system consists of TPD\PTDIAGS\ICT.TST on the
Z1800-series computer, and TPD\PTDIAGS\PT2\PTPROG.EXE
on the DFP computer.

The ICT.TST file on the Z1800-series computer automatically
initiates dialog with DFP and steps through the worksheets. The
worksheets send arguments to tell PTPROG.EXE which test to run.
On the DFP computer, the PTPROG.EXE file contains the
diagnostic commands and executes them.

TPD\PTDIAGS\PT2\PTPROG.EXE, the DFP diagnostic test
software, is run from an 18XX test program, PTDIAGS. Control of
the DFP hardware is through the serial port, just as communications
with DFP normally occur using PTTALK.EXE. Resulting pass/fail
information is available on the Z1800-series computer.

For the DFP diagnostic tests to run successfully, all DFP hardware
must be present and properly connected. The DFP computer must
have between one and four Channel Control Cards installed. Each
CCC is to be connected to a DR2p board installed in the Z1800
Series tester.

The goals of the DFP diagnostic tests are to verify the DFP
hardware is operating as expected and to diagnose any errors. The
DFP hardware tested by the DFP diagnostic tests are

* serial port connection between the computers (partially tested)
» all installed CCCs

« all installed (connected) DR2p Boards

» connections between CCCs and DR2p’s

The diagnostic tests determine the condition of the CCCs and, to a
limited degree, the DR2p boards, but not the condition of the DFP
computer hardware.

Digital Function Processor User’s Guide-5th Ed.

Tools for Custom Development

Tools for Custom Development

Note:

Note:

DFP offers examples of code in the following chapters of this
manual and in the installed DFP data base (in the subdirectory
PT2\EXAMPLES); other examples may be available from
Teradyne. Copy the example file that comes closest to your needs
and customize it as necessary. Verify and debug your code using
PTTALK.EXE, the keyboard and monitor connected to the DFP
computer, and any other instruments you may choose.

Assemblers and Simulators

For jobs requiring DUT assembler work, Teradyne supplies the
option of an assembler plus simulator packages from PseudoCorp.

If you already have an assembler for your DUT work, you can
continue to use it; the PseudoCorp assembler is only necessary
if you want or need to maintain or extend assembly language
work that was originally written for that assembler.

Examples of Custom Applications

Each example of a custom application in later chapters addresses a
particular mode of operation, such as serial boot or flash in free air.
Each shows how its activities are coordinated with the tester, and
how its activities are coordinated with activities of the DUT
processor.

Other examples may be available from Teradyne, Inc.

Digital Function Processor User’s Guide-5th Ed. 2-33

Hardware—Theory of Operation 3

DFP Hardware and Interconnectionsccccccveeenneee. 3-3

DFP FUNCHIONS....uiiiiieie e 3-6

DFP Function and Software Control.............cccocevneeenneee. 3-8

LOgiC DeSigN—DR2P.......ccvviriririiririiiiiiiiiiiiiiiiaas 3-27

Logic Design—Channel Control Card................cccc..... 3-40
Infroduction

Digital Function Processor hardware consists of
* a chassis

¢ a computer

» Teradyne Channel Control Cards

* a DR2p board in the Z1800-series tester

The DFP chassis contains a PC clone computer. The DFP
computer has its own hard disk with 4MB of RAM, and runs MS-
DOS operating system version 6.0 or later. The DFP motherboard
has conventional expansion-board slots which support Teradyne
Channel Control Cards (CCCs). The cable connecting DFP to the
Z1800-series main computer passes through a slot which is
provided for this purpose in the rear of the tabletop of the power

supply bay.

DFP and the Z1800-series main computer do not operate as equals
on a network. Rather, DFP is a slave to the Z1800-series main
computer. The Z1800-series main computer sends commands to the
DFP computer. The command interface consists of com ports
connected by a null modem cable.

A DR2p board has all the in-circuit test features of the standard
32-channel DR2. In addition, DR2p channels have features that
allow them to serve the needs of DFP. DR2p channels pass all
standard Z1800-series self-tests and can be used as ordinary in-
circuit test channels for digital Gray code, vector performance,
analog, and mixed signal purposes in applications not using DFP
functions. Specialization of certain DR2p channels to certain
functions demands special wiring for fixtures in applications that
use DFP functions.

Hardware—Theory of Operation

Figure 3.1 Hardware Overview and Interconnect Diagram

Keyboard & CRT Z1800-Series

for application Test System
development only

W=

%%

{ L L L 1
\ Unit-Under-Test & Device(s) Programmed \

\ Standard Z18XX-Series Fixture Interface \
A A A A ¢ ¢

[1 1 1

DR2p| | DR2p| IDR2p! IDR2p! | DR2 || DR2
for ICT| ffor ICT|

- ——-

Z1800-Series
Test System

............

Digital Function Processor

' COM Port Channel Control Card !

—
'Channel Control Cardi |
©co |
Channel Control Card ||

oo :

Keyboard Port| !Channel Control Card ; N !
. '(CCC) ‘
Video Port N . |

| 3.5"Floppy | |Power Supply |

Note: Digital Function Processor shown configured with
one Channel Card installed,
expandable up to four CCCs.

3-2 Digital Function Processor User’s Guide-5th Ed.

DFP and Interconnections

DFP and Interconnections
The DFP chassis is available in various mounting configurations.

* The 21888, 21890, and Z1880 version mounts horizontally in the
front of the console, below the test head cage.

* The 21860 version mounts vertically in the front of the console,
at the left end of the test head cage.

» The Z1840/1850 version mounts horizontally in the rear of the
console.

In a Z1840, the DFP chassis mounts in the rear of the power supply
bay. In a Z1850, it mounts behind the test head cage. For
information about mounting in other testers, please contact
Teradyne.

Power

DFP’s chassis contains a power supply

which converts the Z1800-series tester’s line conditioner output
voltage to the DC voltages necessary to operate the PC
motherboard and its associated plug-ins. DFP is equipped with a
US 3-prong 110-volt plug for connection into the plugstrip inside
the tester chassis.

Front Panel

Keyboard and CRT connectors are mounted on the front panel.
While the user-supplied keyboard and CRT are not used in day-to
day-testing, they are useful during application development. You
can connect the keyboard and CRT by unlocking the door covering
the front panel and plugging in the two connectors.

Digital Function Processor User’s Guide-5th Ed. 3-3

Hardware—Theory of Operation

Reset Bution

The reset button is not used in normal operation. Ordinarily, reset
action is caused by a relay closure commanded through the PC I/O
board, using either a relay on the RAB or a relay provided for this
purpose on the power supply control board. Resetting causes the
DFP computer to reboot from its hard disk.

Complete hardware reset is essential to slave operation. The Z1800-
series main computer can force the DFP computer to reboot from
DFP’s hard disk in two ways:

* Arelay is provided on the power supply controller board.
* Arelay is available on the RAB.
A manual push button is also mounted on the front panel of DFP.

The Z1800 system software uses ptboot.exe to reboot the DFP
computer. When you install DFP software, you will choose which
of the two versions of ptboot.exe to use, based on the available
hardware connection.

Floppy Disk Drive

The floppy drive in the front panel is drive A and is used for initial
installation of software. You may use drive A for installing custom
programs, for storing write-protected data, or for any other purpose.

Rear

All cables to internal parts of the tester connect to the rear side of
the DFP box. These cables include

* serial port cable
» AC power cable
* reset cable

* ribbon cables from DR2p boards to CCCs

3-4 Digital Function Processor User’s Guide-5th Ed.

DFP and Interconnections

Clock

DFP has a battery-backed clock-calendar. DFP software keeps this
clock in agreement with the clock in the main tester PC. Every time
DFP is assigned a new task, the DFP clock automatically is set to
match the main PC clock.

Cables

Each DR2p connects to a CCC in DFP via one 80-pin flat ribbon
cable. In this cable, one ground wire is supplied for every two
signal wires, distributed in such a way that every signal wire is
adjacent to one ground wire.

Digital Function Processor User’s Guide-5th Ed. 3-5

Hardware—Theory of Operation

DFP Functions

DFP includes the following applications:

» Address generator application

* Serial data application

« Parallel data application without handshake
« Parallel data application with handshake

All CCCs are physically and electrically identical except for their
address switch settings. All DR2p boards are identical. Each
CCC/DR2p pair assumes a function when its registers are loaded by
software running in DFP.

Once a CCC is set up for one of these four functions, it operates in
that capacity until you change its setup.

This document illustrates these four functions independently. It is
possible to mix them to some degree, and achieve hybrid
functionality, or to achieve varying functionality by changing the
setup during a test.

Address Generator Application
(ADDRESS mode)

In 24-bit address generator mode, the CCC provides a 24-bit
address counter for addressing nonvolatile memories in free-air
mode.

The counter can be cleared, loaded, and incremented by DFP’s
CPU.

If you expect to have DUTs with multiple address buses, you can
install multiple CCCs in DFP. You can also use unused high-order
address bits as disable drivers, to disable devices on the DUT
during nonvolatile memory (NVM) writing.

Serial Application
(SERIAL mode)

In a two-port serial application, the CCC provides two flexible
serial asynchronous ports, two 8-bit parallel ports, and a 0-12.75
volt programmable voltage source and sensor.

Under program control, the serial ports can operate at a wide range
of baud rates. You can program them for word size, stop bits and
parity. The primary purpose is to bootstrap microcontrollers such
as the Motorola 68HC11 and 68HCO5 series. The serial port

3-6 Digital Function Processor User’s Guide-5th Ed.

DFP Functions

controller is a Zilog/Hitachi 85C30 chip. Teradyne recommends
you obtain an 85C30 manual.

The parallel ports are simple 8-bit latches, each of which can be
used for input or output. They provide reset signals at the beginning
of bootstrap operations, wiggle bits during the programming of
serial-access EEPROMSs, and exchange single-bit messages with
the DUT as needed. As outputs, these ports have the full backdrive
specifications of DR2 channels.

If more than two serial ports are needed in an installation (for
example, if multi-panel DUT construction is expected), you can
add Channel Control Cards and program them to operate in the
serial boot mode.

Parallel Data Application Without Handshake
(DATA mode)

In parallel data applications, the CCC provides two eight-bit
bytewise bidirectional ports (Port A and Port B) and one eight-bit
bitwise bidirectional port (Port C).Using these data ports, the DFP
CPU supplies commands and data to flash memories and reads out
data and status from flash memories. Each board handles the data
path to two 8-bit wide flash memory chips or to one 16-bit wide
chip. Up to four CCCs can be installed along with up to four DR2p
boards to serve memories on wider buses.

Parallel Data Application With Handshake
(PARALLEL mode)

Parallel Data with handshake also provides the same abilities as
described above, but with handshaking capabilities. Signals
originating on the DUT can act as strobes which enable the data
paths from DR2p to the DUT. In addition, the CCC provides a set
of signaling flipflops which allow programs running in the DUT to
control the rate at which DFP provides new data to those ports.

Digital Function Processor User’s Guide-5th Ed. 3-7

Hardware—Theory of Operation

DFP Function and Software Control

DR2p, like DR2, has 32 channels and serves 32 nodes of the device
under test (DUT). The eight lowest numbered channels (referred to
here as number 0 through number 7) are associated with Port A.
The next eight are associated with Port B, and the third group, Port
C. The fourth group, numbered 24 to 31, have special purposes, are
not associated with a specific port, and generally do not have logic-

level signals on them.

Ports A and B are similar to each other in concept, working
bytewise. Port C is controlled bitwise.

Figure 3.2 DFP’s DR2p Resources

3-8

Two 8-bit outputs or inputs, or

One each 8-bit output and input, or
One 16-bit output or input, or

LS bytes of a 24-bit address counter.

24 logic-level
8 | Outputs enabled by group C input signal signals
referenced to
Inputs latchable by group C input signal DUT Vcec.
«—>{ One 8-bit output or input, or (2'Ié'1hese
"1 8 each bi-directional I/O pins, or b Ck%n_
(™| MS byte of a 24-bit address counter, or ackdrive.)
k—p Control pins for group A and B actions and
> signaling flipflops, or
K—b i
2 each logic-level TxD and RxD
—1 Programmable Vpp source 12.5V, 100mA
RE RS232 and
HH 2 each RS232 TxD and RxD Vpp switched
Q—D} by relays
Q_D] -1/-3 more direct-connect channels

DR2p can serve
as a normal
32-channel
driver-receiver
board for analog
or digital in-
circuit testing.

Table 3.1 Channel Functionality in Various Applications

Ch. Functional Mode
PARALLEL ADDRESS SERIAL DATA
(Parallel w/ Handshake) (Address) (Serial) (Parallel no Handshake)
0 PortA DO A0 (o) PortA DO PortA DO (io)
1 PortA D1 Al (o) PortA D1 PortA D1 (io)
2 PortA D2 A2 (0) PortA D2 PortA D2 (io)
3 PortA D3 A3 (0) PortA D3 PortA D3 (io)

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Ch. Functional Mode

PARALLEL ADDRESS SERIAL DATA
(Parallel w/ Handshake) (Address) (Serial) (Parallel no Handshake)

4 PortA D4 A4 (0) PortA D4 PortA D4 (io)
5 PortA D5 A5 (0) PortA D5 PortA D5 (io)
6 PortA D6 A6 (0) PortA D6 PortA D6 (io)
7 PortA D7 A7 (0) PortA D7 PortA D7 (io)
8 PortB DO A8 (0) PortB DO PortB DO (io)
9 PortB D1 A9 (0) PortB D1 PortB D1 (io)
10 PortB D2 A10 (o) PortB D2 PortB D2 (io)
11 PortB D3 Al1 (o) PortB D3 PortB D3 (io)
12 PortB D4 A12 (o) PortB D4 PortB D4 (io)
13 PortB D5 A13 (0) PortB D5 PortB D5 (io)
14 PortB D6 Al4 (o) PortB D6 PortB D6 (io)
15 PortB D7 A15 (o) PortB D7 PortB D7 (io)
16 Data RdyA (0) A16 (0) TxdA (0) PortC DO (io)
17 Data EnA (i) Al7 (o) RxdA (i) PortC D1 (io)
18 Data StbA1 (i) A18 (0) PortC D2 (io) PortC D2 (io)
19 TestA (i) A19 (o) PortC D3 (io) PortC D3 (io)
20 Data RdyB (0) A20 (o) TxdB (0) PortC D4 (io)
21 Data EnB (i) A21 (o) RxdB (i) PortC D5 (io)
22 Data StbB1 (i) A22 (0) PortC D6 (io) PortC D6 (io)
23 TestB (i) A23 (0) PortC D7 (io) PortC D7 (io)
24 Vpp (0) Vpp (0) Vpp (0) Vpp (0)

25 Ch25 Ch25 RS232TXD A*1 Ch25

26 Ch26 Ch26 RS232 RXD A*1 Ch26

27 Ch27 Ch27 RS232TXDB*1 Ch27

28 Ch28 Ch28 RS232 RXDB*1 Ch28

29 Ch29 Ch29 Ch29 Ch29

30 Ch30 Ch30 Ch30 Ch30

31 Ch31 Ch31 Ch31 Ch31

Note: Port A and Port B are bytewise controlled; Port C is bitwise
controlled.

Addresses on CCCs

The base address of a CCC is established by an array of DIP
switches. Once the base address has been set, registers on the CCC
will have defined addresses. Your application program will write to

or read from these addresses to control the modes of operation and
to exchange information with the device under test.

Digital Function Processor User’s Guide-5th Ed. 3-9

Hardware—Theory of Operation

Table 3.2 Base Addresses for CCCs

CARD O
CARD 1
CARD 2
CARD 3

0x0380
0x0388
0x0390
0x0398

The specific address of a control register or data port is a
combination of the case CCC address with a “Block Number” and
an “offset.” You will ordinarily use library mnemonics instead of
numbers for register addresses to make your programs more
readable. Both methods are presented in the following register
descriptions.

Note:

Refer to your DFP installation guide or to the section “CCC

Address Management” later in this chapter for a discussion of
these switches and address generation.

Figure 3.3 DIP Switch Settings

Bonenaag | »dennna0g
|enonnogg | plgannog:

Note: SW1, position 1 must always be off.

Table 3.3 Programmer’s 10 Port Map

Block Offset Mode Description

0 0 W16 Prime address 0-15 register

0 2 W8/R16 Load address 16-23 and update register
0 4 w16 Load address 0-15 and update register
0 6 w8 Inc/Dec address register

1 0 w8 Port C control

1 2 W16 Port A/B control and Port D aux. relays
1 4 w8 Reset Port A handshake

1 6 w8 Reset Port B handshake

2 0 W16 Gate Array instruction

2 2 W16 Gate Array Enables

3-10

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Block Offset Mode Description
2 4 W16 Gate Array Data
2 6 W16 Gate Array Gray Code
3 0 RW 8 Port A data
3 2 RW 16 Port B data—data on bits 8-15
3 4 W8 R16 Port C data
3 6 RW 16 Port A+B data
4 0 RW 16 CTC Counter/Timer 0
4 2 RW 16 CTC Counter/Timer 1
4 4 RW 16 CTC Counter/Timer 2
4 6 ws8 CTC Mode Register
5 0 RW 8 SIO Ch B command
5 2 RW 8 SIO Ch B data
5 4 RW 8 SIO Ch A command
5 6 RW 8 SIO Ch A data
6 0 R8 Card Status
6 2 w8 Software Reset
6 4 w8 Vpp Data Register
6 6 ws8 Misc. Register
7 0 w8 Trigger timer O
7 2 w8 Trigger timer 1
7 4 w8 Trigger timer 2
7 6 Not used
Legend: W Write
R Read
8 8 bits wide
16 16 bits wide

Note: Take care to use the proper C-language software with an 8-bit
wide installation or 16-bit wide installation; writing or reading
with the wrong word size causes unpredictable operation, but
no error messages are produced.

Digital Function Processor User’s Guide-5th Ed. 3-11

Hardware—Theory of Operation

3-12

Register Descriptions

The I/O registers are described below (also see Table 3.3). Each
description includes examples: first an example using the straight
addressing format, then the same example using the pt2.lib define
statements or function calls. The define statements and function
calls should make programming easier for the user.

Note: The total list of define statements and function call descriptions
available via pt2.h and pt2.lib can be found in p2t.h (see the
chapter including the listing of pt2.h).

Block 0—Address Counter

Offset 0. Store a 16-bit data value in the Least Significant (LS) 16
bits of the address counter. The actual output register which drives
the DUT pins is not updated.

Offset 2. Store an 8-bit value in the upper byte of the address
counter, then update the output register with all 24 bits of the
counter in parallel.

Offset 4. Store a 16-bit value in the LS16 bits of the address
counter, then update the output register with all 24 bits of the
counter in parallel.

Offset 6. Increment or decrement the address counter, according to
the miscellaneous register direction control, then update the output
register with all 24 bits of the counter in parallel.

Example without define statements:

0000 Block
+0380 Card Address (CCC 0)
+ 6 Offset

outp(0x0386,0x00); /lincrement/decrement register
//(0x00 dummy data)

Example with pt2.lib define statements:

includes functions:
setCountDir (refer Block 6, offset 6)
setCount (refer Block 0, offset 0)

incCount (refer Block 0, offset 6)
setCountDir(0,UP); /Iset card 0 to count up
setCount(0,0x03, 0x0000); /IDUT address = 0x030000
incCount(0); /lincrement address by 1

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Block 1—Port Control
Offset 0 - Port C

Write Port C control information derives from whether a bit should
be an input or an output and is determined by the DUT and CCC
functionality.

bit definition: 0 = input (to DFP)
1 = output (from DFP)

Note: Additional function control for Address/Serial/Parallel modes
are found under Block 6, offset 6.

Example initialization values for Port C (refer also to Table 3.2):

1 - Address mode with 19 address pins 0x07
(AO-15 via Port A+B, A16-18 via port C)
bit 0 - output -> DUT address bit 16
bit 1 - output -> DUT address hit 17
bit 2 - output -> DUT address hit 18

2 - Serial mode - 1 device : 0x01
CCC TxdA - serial output -> DUT serial Rxd
CCC RxdA - serial input <- DUT serial Txd

3 - Serial mode - 2 devices : 0x11
CCC TxdA - serial output -> DUT A serial Rxd
CCC RxdA - serial input <- DUT A serial Txd
CCC TxdB - serial output -> DUT B serial Rxd
CCC RxdB - serial input <- DUT B serial Txd

4 - Parallel mode without HS : 0x07
(also called data mode)
bit 0 - output -> DUT WE*
bit 1 - output -> DUT OE*|
bit 2 - output -> DUT CE*

5 - Parallel mode without HS : 0x1D
(also called data mode)
bit 0 - output -> DUT CE*
bit 1 - output -> DUT WE*
bit 2 - output <- DUT serial out (SO)
bit 3 - output -> DUT serial in (SI)
bit 4 - output -> DUT clock

6 - Parallel data mode with HS - 2 devices : 0x11
Data RdyA - output -> DUT
Data EnA -input <- DUT
Data RdyA - input <- DUT
Data RdyB - output -> DUT
Data EnB - input <- DUT
Data RdyB - input <- DUT

Digital Function Processor User’s Guide-5th Ed. 3-13

Hardware—Theory of Operation

Example - Port C output for address mode -
19 address pins (A16-19 via Port C):

A. Without define statements:

1000 Block
+0388 Card Address (CCC 1)
+ 0 Offset

outp(0x1388, 0x07); //C port, bits 0-2 output

B. With pt2.lib define statements:

outp(ca[1]|PC_CNTL, 0x07); //C port, bits 0-2 output
or

outp(CARD1|PC_CNTL, 0x07); //C port, bits 0-2 output

Example - Port C output for serial mode using Channel A:

A. Without define statements:

1000 Block
+0388 Card Address (CCC 1)
+ 0 Offset

outp(0x1388, 0x01); //C port, bit 0 output= CCC TXDA
/I bit 1input = CCC RXDA

B. With pt2.lib define statements:

includes : PC_CNTL
PC_DATA (refer Block 3, offset 4)

outp(ca[1]|PC_CNTL, 0x01); //C port, bit 0 out = CCC TXDA
1 bit 1 in = CCC RXDA

outp(ca[1]|PC_DATA, 0x00); //setup DR2P U73 to for serial
/Imode

or
outp(CARD1|PC_CNTL, 0x01); //C port, bit 0 out = CCC TXDA
1 bit 1 in = CCC RXDA
outp(CARD1|PC_DATA, 0x00); //setup DR2P U73 to for serial
/Imode

3-14 Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Offset 2. Write Port A,B,D control information.

Port A & B: The control information indicates whether a bit should
be an input (transparent or strobed) or an output (static or dynamic),
which is determined by their DUT and CCC functionality. The
lower 8 bits (bits 0-7) determine how Port A&B function, as shown.

Table 3.4 Port A & B Control

7 6 5 4 3 2 1 0
‘ PBinl ‘ PBin0 ‘PBoutl‘ PBoutO‘ PAin1 ‘ PAInO ‘ PAoutl‘ PAout(#

Port A static output

Port A dynamic out, H enabled
Port A dynamic out, L enabled
Port A output disabled

kR oo
R ol ko

Port A transparent input
Port A strobed H input
Port A strobed L input
llegal State

PP O|O

ROk |O

Port B static output

Port B dynamic out, H enabled
Port B dynamic out, L enabled
Port B output disabled

| P OO
POl RO

Port B transparent input
Port B strobed H input
Port B strobed L input
lllegal State

PR O|O
ROk |O

“Static output operation” means that the port is always active and
does not float.

When a port is in dynamic output mode, a channel is used to enable
and tristate the port. Channel 17 is used for port A and channel 21
for port B—I17 and 121 in the DR2p U74 PAL equations. This
signal usually is generated by the DUT.

Port D: The control information indicates whether the DR2p relay
is open or closed. These are the direct relays that can handle the
VPP and RS232 voltages. The upper 8 bits (bits 8-15) determine
whether the D port relays are opened or closed, each bit
representing the corresponding channel (bit 8= channel 24, bit 9=
channel 25, etc.)

bit definition: 0 = closed
1 =open

Code Example Port A = static output, transparent input
Port B = output disabled, transparent input
PortD = channel 0 (VPP) DR2P:relay closed(set)
channel 1-7 DR2P :relays open (reset)

Digital Function Processor User’s Guide-5th Ed. 3-15

Hardware—Theory of Operation

3-16

Note:

CAUTION

A. Without define statements:

1000 Block
+0380 Card Address (CCC 0)
+ 2 Offset
outpw(0x3382,0xFE30); /IA out, B in, VPP set

FE30:

FE =1111 1110 ->bit 0 = VPP DR2P relay set
30 = 0011 0000 ->hit 0,1 = PAout= static out
bit 2,3 = PAin = xparent in
bit 4,5 = PBout = out dis-
abled
bit 6,7 = PBin = xparent in

(See Table 3.4)

B. With pt2.lib define statements:

outpw(ca[0]|JPAB_CNTL, OXFE30); //A out, B in, VPP set

Further control for Address/Serial/Parallel modes is explained
in the section covering Block 6, Offset 6 later in this chapter.

Since the D port auxiliary relays are often used with voltage levels above
or below the TTL levels normally used by the DR2P (VPP, RS232), these
relays MUST be cleared (opened) before the DFP returns control of the
DR2P card/s to the 18xx computer. Failing to clear these relays may result
in damage to the tester. The easiest way to clear these, as well as all DR2P
relays used during the DFP program, is with the pt2.lib function- release
DR:

releaseDR(0); //clear all relays - card 0.
releaseDR(1); //clear all relays - card 1.
[Irefer pt2.h

Offset 4. Write to this address to reset the Port A handshake logic.
A hard reset also achieves this effect.

Offset 6. Write to this address to reset the Port B handshake logic.
A hard reset also achieves this effect.

Block 2—Gate Array

This block of addresses writes to the DR2p gate arrays, primarily to
allow control of their relays, although all other functions can be
controlled. The bit values corresponding to tester backplane data
bits are tabulated below. (Refer to DR2P schematic)

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

All data writes are 16 bit, and convey data to the gate array coded as
shown below.

BO =Inst O or Data O
Bl =Inst1or Data 1
B2 =Inst 2 or Data 2
B3 =Inst 3 or Data 3

B4 =Inst4 or Data 4

B5 = *All Nodes or Data 5
B6 = Node addr(0) or Data 6
B7 = Node addr(1) or Data 7

B8 = Inst(5)
B9 = Inst(6)
B10 = Inst(7)

B11 = Card select

B12 = Node addr(2)
B13 = Node addr(3)
B14 = Node addr(4)
B15 = Not used

Note: The actual coding needed for writing to the gate arrays can be
found via the define statements in the pt2.h file; see the chapter
covering pt2.h.

Offset 0. Gate array Instruction. Generates a ‘INST_STROBFE’
signal to place an instruction in the gate arrays. Used to set D, E, F,
and G relays.

Offset 2. Gate array Enables. Generates a ‘E_STEP_Ck’ signal to
clock the gate arrays. Currently not used in DFP operations.

Offset 4. Gate array Data. Generates a ‘D_STEP_CKk’ signal to clock
the gate arrays. Currently not used in DFP operations.

Offset 6. Gate array Gray Code Data. Generates a ‘Data_ STROBE’
signal to latch data into the gate arrays. Currently not used in DFP
operations.

Example - Set DR2P D-reed channel 0, card O:

A. Without define statements:

2000 Block
+0380 Card Address (CCC 0)
+ 0 Offset
outpw(0x2388, 0x29); //Set D-reed position O

Digital Function Processor User’s Guide-5th Ed. 3-17

Hardware—Theory of Operation

Note:

Note:

3-18

0x29: = 0x20 - node address 0 (channel 0)
+0x08 - D-reed
+0x01 - Set

(See the pt2.h define statements)

B. With pt2.lib define statements:

outpw(ca[0]|GA_INST,D_REED|nodA[0]|SET);
or
outpw(CARDO|GA_INST,D_REED|nodA[0]|SET);

Block 3—Port A/B/C Data

Offset 0. Write to set Port A data. Depending on the mode selected
for this port, data may be enabled to DUT or may be held in high Z
mode. Read to return value of Port A data. Data returned will be
last data latched, if port is set into latched mode.

Offset 2. Write to set Port B data. Depending on the mode selected
for this port, data may be enabled to DUT or may be held in high Z
mode. Read to return value of Port B data. Data returned will be
last data latched, if port is set into latched mode. Note that Read/
Write Port B is a 16-bit operation, with Port B data passed via the
upper 8 bits (bits 8 through 15).

Offset 4. Write to set Port C data in either parallel or serial mode. In
address generator mode, port C will be updated as part of the
counter programming in block 0. If a 16-bit address counter is used,
Port C is free to be used for other functions and can then be read or
written. Note that Read Port C is a 16-bit operation with Port C data
bits 0 through 3 returned via bits 0 through 3 and Port C data bits 4
through 7 returned via bits 8 through 11.

If using either serial or parallel with handshake modes, it is
necessary to perform a preliminary port data write of 0x00 fol-
lowing the C port control write. This will enable the ARDY/
BRDY, TXDA/TXDB signals via U73 on the DR2P card (See
the U73 PAL Equations in this chapter).

Example - Read Port C data / Write Port C data:
A. Without define statements for Read Port C:

3000 Block
+0390 Card Address (CCC 2)
+ 4 Offset
inpw(0x3394); //Read Port C data

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Note: read port A = returned: bits 0-7 = data A 0-7
read port B = returned: bits 8-15 = data B 0-7 !!!
read port C = returned: bits 0-3 = data C 0-3
bits 8-11 = data C 4-7 !!!
(See Table 3.3)

Note: C software functions:

inp/outp =8 bit read or write
inpw/outpw = 16 bit read or write

B. With pt2.lib define statements for Read and Write Port C:

includes: PC_CNTL - Port C input
PC_DATA - Read data Port C
PC_CNTL - Port C output
PC_DATA - Write data Port C

outp(ca[2]|PC_CNTL,0x00); //PortCin
data = inpw(ca[2]|PC_DATA); //data read
outp(ca[2]|PC_CNTL,0xFF); //Port C out
outp(ca[2]|PC_DATA,0x55); //data write 55

or

Ooutp(CARD2|PC_CNTL,0x00); //PortCin
data = inpw(ca[2]|PC_DATA); //data read
outp(CARD2|PC_CNTL,0xFF); //Port C out
outp(CARD2|PC_DATA,0x55); //data write 55

oOffset 6. Write/Read Port A and Port B data together to allow
concatenation of Port A and Port B into a 16-bit parallel port.

Digital Function Processor User’s Guide-5th Ed. 3-19

Hardware—Theory of Operation

Block 4—CTC

The DFP interface board (PN 051-003-00) provides three timers via
an 82C53 package, allowing the construction of accurate timing
loops. The timers have 500 nanosecond resolution and 10
millisecond maximum time and can be polled.Teradyne
recommends DFP programmers obtain the manual for the 82C53
from Intel.

The 82C53 registers are available as follows:
Offset 0. 82C53 Counter/Timer 0.
Offset 2. 82C53 Counter/Timer 1.
Offset 4. 82C53 Counter/Timer 2.
Offset 6. 82C53 Mode register 3.

The counter is configured by on-board logic to be used in mode 1.
This gives three timers, each with retriggerable one-shot
functionality. The timing function is triggered by writes to
addresses in block 7.

The timeout status of each channel can be read as part of the board
status register—block 6 offset 0.

Bit 2 = counter O
Bit 3 = counter 1
Bit 4 = counter 2

The data bits will be returned as a logic 1 when timeout is complete
for the respective channel.

For further information on programming timers, obtain an 8253
data manual from Intel or another 8253 manufacturer.

Example - Set Counter/Timer 1 to mode 1:

A. Without define statements:

4000 Block

+0380 Card Address (CCC 0)

+ 6 Offset
outp(0x4386,0x32); //Settimer 1 to mode 1

(See manufacturer’'s manual for 8253 chip).

B. With pt2.lib function:

initCard(0); [finits card O -includes
/Iset all three timers to mode

3-20 Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

Below is an example of how you may use the CTC timer using
PT2.LIB defines and functions:

includes: initCard()- timer in mode 1
CTC_CNTLO - timer 0 count
TRG_0 - trigger timer

(Refer Block 7)
readStatus - read misc. status
(refer Block 6, Offset 0)

initCard(0); /Iset timers to mode = 1
outp(ca[0]|CTC_CNTLO,(unsigned int) 10);//set timer O for count = 10
outp(ca[0]|TRG_0,0x00); /itrigger timer 0 to start count

/I (0x00 dummy data)
if((readStatus(0)) & 0x04); //check status = set
or
while(!(readStatus(0) & 0x04)); //wait status = set
/I'& 0x04' masks for bit 2=timer O status

Note: The timing may vary slightly between DFP computers depend-
ing on the BIOS setup and compiler/options.

Block 5—SIO

The DFP interface board (PN 051-003-00) provides an 85C30 SIO
chip to allow the transmission/reception of asynchronous serial data
with flexible selection of baud rates.

The 85C30 registers are available as follows:

offset 0. 85C30 channel B command register.

Offset 2. 85C30 channel B data register.

Offset 4. 85C30 channel A command register.

offset 6. 85C30 channel A data register.

Example - Select register 9 of Channel A of the 85C30:

A. Without define statements:

5000 Block
+0380 Card Address (CCC 0)
+ 4 Offset

outp(0x5384,0x09); //select 85C30 CH A, reg 9

Digital Function Processor User’s Guide-5th Ed. 3-21

Hardware—Theory of Operation

3-22

B. With pt2.lib define statements:

includes: SIO_ACOM - select command register
SIO_DAT - data to write to register

outp(ca[0]|SIO_ACOM,0x9); //select 85C30 CH A, reg 9
outp(ca[0]|SIO_ADAT,0xc0); /lwrite 85C30 reset

C. With pt2.lib function for SIO COM write:

includes: sioComWr - select reg and write data

sioComWr(ca[0],SIO_ACOM, 9, 0xc0);//85C30, CH A, reset

For further information on programming the 85C30, obtain an
85C30 data manual from Zilog or Hitachi, and look at the custom
examples in this manual.

Block 6—Miscellaneous Controls

The voltage source provides Vpp to the DUT (usually 12 volts
+/- 5%), or supplies the 9-volt signal needed to initiate the
bootstrap process on 68HCO05 microcontrollers.

The voltage sensor detects Vpp if it is generated by circuitry on the
DUT. The easiest way to use this feature is to use the pt2.lib
function measVpp(); the A-D circuitry measures the voltage by
successive approximation, returning an integer value which needs
to be multiplied by .05 for the actual voltage (refer to the pt2.h
listing in Chapter 7).

Offset 0. Read board status. Bit values returned are:

BO = Channel A handshake flag bit.

B1 = Channel B handshake flag bit.

B2 = Timer O status.

B3 = Timer 1 status.

B4 = Timer 2 status.

B5 = Power supply overload status.

B6 = Address counter Up/Down control bit.
B7 = Address counter Up/Down control bit.

Bits 6 and 7 are designed to be used for self tests.

Example 1 - Check for channel A handshake bit.

Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

A. Without define statements:

6000 Block
+0380 Card Address (CCC 0)
+ 0 Offset

if(inp((0x6380) & 0x01)); //check CH A handshake bit
/I'& 0x01' = mask for bit 0

B. With pt2.lib define statements:

if(inp((ca[0]|STATUS) & 0x01)); //check CH A handshake bit
/I'& 0x01' = mask for bit 0

Example 2 - Measure VPP supplied by DUT:
A. With pt2.lib function call measVpp():

value = measVpp(0); //returns integer value
volts = value * .05; //value * .05 = actual voltage

Note: measVpp returns approximated integer value via successive
readings of the misc. status register, bit 5 - the power supply
overload status.

Offset 2. Perform software reset on control logic. To provide full
initialization, all port control registers must be updated.

Example - Reset card 3:

A. Without define statements:

6000 Block
+0398 Card Address (CCC 3)
+ 2 Offset

outp(0Ox638A,0x00); //reset card 3
//(0x00 dummy data)

B. With pt2.lib define statements:

outp(card[0]|RST,0x00); //reset card 3
//(0x00 dummy data)

C. With pt2.lib function initCard:

initCard(3); //inits card 3 -includes
/Isoftware reset.

(See pt2.h chapter.)

Digital Function Processor User’s Guide-5th Ed. 3-23

Hardware—Theory of Operation

Offset 4. Write Vpp supply voltage to DAC. Vpp is pro-
grammable from 0 to 12.75v in 0.05v increments. Vpp
must be enabled by the miscellaneous register (block

6, offset 6, bit 1) and by the DR2p board relay (block

1, offset 2, bit 8).

Example - Set card O Vpp to 12v:

A. Without define statements:

6000 Block
+0380 Card Address (CCC 0)
+ 4 Offset
outp(0x6384,0xF0); //setup Vpp Card 0 to 12V

B. With pt2.lib define statements:

outp(card[0]|VPP,0xF0); //set Vpp Card 0 to 12V
or
outp(CARDO|VPP,0xFO0); //set Vpp Card 0 to 12V

C. With pt2.lib defines and function:

includes: PAB_CNTL - set D-reed for VPP (Block 1,offset 2)
setVPP - set VPP voltage (Block 6,0ffset 4)

VPP - VPP on (Block 6,0ffset 6)

delay - 50 ms delay

VPP - VPP off (Block 6,0ffset 6)
outpw(ca[0]|PAB_CNTL,0xFEQOQ); //VPP set, Port A,B = out
setVpp(0,240); /IVPP = 12V(240 x .05 = 12)
selVpp(0,0ON); /Iturn on Vpp
delay(50); //50ms wait for VPP
selVpp(0,0FF); [Iturn off Vpp

Offset 6. Write to Miscellaneous Register. This register contains the
odd control bits used by the control board. They are defined as fol-
lows:

BO = Set to 1 for serial function and 0O for address or data.
B1 =Vpp on/off. 1 =o0n, 0 = off.

B2 = Address counter up/down. 1 =up, 0 = down.

B3 = Enable RS232 driver. 1 = enable, 0 = disable.

B4 = Dual purpose:
Select serial mode: TTL levels or RS232 levels
0=TTL, 1 =RS232;
Selects handshake:
0 = handshake, 1 = no handshake (Port C = 1/0)

3-24 Digital Function Processor User’s Guide-5th Ed.

DFP Function and Software Control

B5 = Enable DFP mode.
0 = normal DR2 functions, 1 = DFP functions.

B6 = Invert Tx/Rx data Channel A. 0 = normal, 1 = invert.

B7 = Invert Tx/Rx data Channel B. 0 = normal, 1 = invert.
Example - Card O = Address mode
count up (addresses)

enable dfp/pt2

A. Without define statements:

6000 Block
+0380 Card Address (CCC 0)
+ 6 Offset

outp(0x6386,0x24);

Note: 0x24: 0010 0100 -> bit 0 = 0 = address mode
bit 1 = 0 = Vpp off
bit 2 =1 = count up
bit 3 = 0 = disable RS232 driver
bit 4 = 0 = if serial mode -
TTL level
bit 5 =1 = Enable DFP
bit 6 = 0 = if serial mode -
Ch A normal mode
bit 7 = 0 = if serial mode -
Ch B normal mode

(See Table 3.3)

B. With pt2.lib define statements:

outp(ca[0]|MISC,0x24);
or
outp(CARDO|MISC,0x24);

C. With pt2.lib functions -

setMode(0,ADDRESS); //address mode, card O
ptEnable(0,0ON); //enable DFP, card O
setCountDir(0,UP); //direction of count is up, card O

Digital Function Processor User’s Guide-5th Ed. 3-25

Hardware—Theory of Operation

Note: There are four pt2.lib defined modes for the setMode function
(See Table 3.2 and the pt2.h chapter):

ADDRESS = address mode

SERIAL =TTL level serial mode

DATA = parallel mode without handshake
PARALLEL = parallel mode with handshake

Block 7—Timer Trigger

Offset 0. Write of any data to this address starts timer 0.
Offset 2. Write of any data to this address starts timer 1.
Offset 4. Write of any data to this address starts timer 2.

Offset 6. Not currently used.

Example - Start counter/timer O:
A. Without define statements:

7000 Block
+0380 Card Address (CCC 0)
+ 0 Offset
outp(0x6380,0x00); //trigger timer O
//(0x00 dummy data)

B. With pt2.lib define statements:

outp(ca[0]|TRG_0,0x00); /itrigger timer O to start count
/I (0x00 dummy data)

3-26 Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

Logic Design—DR2p

DR2p has all the functions of a DR2 and passes all DR2-oriented
self test diagnostics. Thus, an application that does not use DFP can
be run on a tester equipped with DFP without need to consider
where the DFP channels are located in the fixture receiver. The
DR2p channel locations are important only to applications that use
the features of DFP.

DFP installations may contain from one to four DR2p boards. If
DR2p boards are present in a tester, they are usually placed in the
top four slots of the 320- node “small fixture” zone so that
applications using small fixtures can reach them. Therefore the first
DR2p will be in position 6 (the seventh channel board in the test
head cage), and will serve nodes 192 through 223. The second will
be in position 7 (the eighth channel board in the test head cage) and
will serve nodes 224 through 255, and so forth.

DR2p schematics, found in tlegineering Reference Drawings
manual for each specific Z1800-Series tester, are helpful in the
following discussion. Examine and compare them to DR2
schematics to see what has been added to DR2 to make DR2p.

Digital Function Processor User’s Guide-5th Ed. 3-27

Hardware—Theory of Operation

Figure 3.4 Block Diagram, DR2p Board

— Tester Channels

Gate Array Input Multiplex Gate Array Output Readback Port
provides control of Multiplex provides provides parallel
relays. control of sensing of DUT.
channel drivers.
DR2p / Relays
32 Added connector gives DFP

CCC access to multiplexers

and ports on DR2p.

N AN . Digital Function
; Processor

Channel Driver

Q

c

<

=% f !

3 -

s 1 1]

° 77 Amplifier I cce

g i e igi

O ; ; Digital
?‘j L -t 80 Function
2 i : Processor
E : »—E Computer
2 i

| D Gato Array

The Block Diagram, Figure 3.3, illustrates DFP’s general design. It
does not contain all the information, nor does it show to which
channels the multiplexing applies.

The block labeled Gate Array Input Multiplex allows the DFP
computer to talk directly to the inputs of the gate arrays. This
allows DFP to control the E, F, G and D reed relays. DFP does not
use the gate arrays to apply digital signals to the DUT.

The block labeled Gate Array Output Multiplex allows the DFP
computer to talk directly to the driver amplifiers. Thus DFP can
stimulate the DUT directly, regardless of the state of the gate
arrays, and neither depend on nor interfere with the Test Head
Controller or VP.

The block labeled Readback Port allows the DFP computer to
receive parallel arrays of bits from the DUT.

3-28 Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

Gate Array Input Multiplex

Inputs from the Z18xx backplane, which originate in the Test Head
Controller (or Vector Processor Card, if your system is VP-
equipped), are enabled by the pin 19 inputs of the four mux chips
U67, U75, U66 and U71. The DFP inputs come via the LS16 of the
GBUS. The pin 1 inputs enable this path.

The pin 1 signal is labeled EPT* which is an abbreviation for
Enable PROMPTest. The pin 19 signal is labeled ENORM* which
is an abbreviation for Enable NORMal. These two signals are
mutual complements.

Note: Changing a DR2p from PROMPTest DFP mode to NORMal
mode, or back again, does not bring about any automatic hard-
ware initialization. Therefore damage could result if an appli-
cation does not clean up after itself. It is the programmer’s
responsibility to ensure safe operation before, during, and after
use of the DR2p in DFP mode.

The GBUS

The GBUS itself is a 24-bit bus used in DFP functions. There is no
equivalent to the GBUS in the ordinary DR2 board. The GBUS
communicates with the CCC via the 80-pin ribbon cable. The CCC
can send information to the GBUS or receive information from it.
Connector J4 receives the 80-conductor ribbon cable whose other
end is connected to a CCC.

The cable is terminated with capacitively coupled 82 ohm resistors.
The GBUS itself is pulled up with 22k resistors.

Devices U64, U68 and U72 are bidirectional buffers, enabled by
signal GBUSENABLE*. GBUSIN controls their direction.

GBUSIN is high when the CCC is driving the GBUS, and low
when the CCC is taking data from the GBUS. As noted earlier,
some functions involve 8-bit transfers, some involve 16-bit
transfers, and take place at different positions on this bus. All 24
bits of the GBUS are switched for every operation, regardless of the
width or position of the word being transferred.

Other Signals on J4

Several other signals that connect the CCC with DR2p are treated
individually rather than as members of a bus.

DIR, ARDY, BRDY, A0, Al, 1E are covered in the discussion of
U73—the Address Decode PAL.

Digital Function Processor User’s Guide-5th Ed. 3-29

Hardware—Theory of Operation

3-30

ESY* and DSY* are available to combine with the normal ESYNC
and DSYNC signals if necessary. In practice these two are rarely
used.

ISTB* and DSTB* similarly combine with INST STROBE* and
DATA STROBE* to load registers in the gate arrays. INST
STROBE* is used in controlling the E, F, G and D reed relays.

EPT* and ENORM* are complements, as noted earlier, and are
used to enable PROMPTest functions in opposition to NORMAL
functions.

121 and 117 return logic-level serial bitstreams to the CCC’s two
serial ports.

EPT8-15 (ENABLE PROMPTest 8-15) returns a handshake signal
to the CCC. In the handshake mode, whenever the DUT strobes in
data from Port B, a flipflop in the CCC records the fact and allows
the software to make the next data element available. This signal
notifies the CCC of the event, although the actual strobed enabling
of data onto the DUT’s data bus takes place on the DR2p.

EPTO-7 works just like EPT8-15, except with respect to Port A
instead of B. Ports A and B have separate signaling flipflops, so
one CCC/DR2p pair can effectively support two 8-bit DUT data
buses.

The eight DIRECT connections correspond to channels 24 through
31 of the DR2p board and are used to conduct analog or other non-
logic-level signals directly between the CCC and the DUT. For
example, the Vpp is assigned to channel 24. The CCC also provides
RS232 levels in serial mode, and these DIRECT connections are
used to carry the RS232 signals. Other uses are reserved for future
versions of the CCC.

The CCC can be equipped with a custom daughterboard that can
communicate directly with the DIRECT signals. This is discussed
in the section titled Channel Control Cards later in this chapter.

All eight DIRECT signals are isolated by relays from the channels
they serve. The isolation relays are on the DUT side of the D relay,
so the digital drive and sense circuits are not exposed to high
voltages.

U25, an 8-bit latch, can be set by software command to engage any
combination of 8 relays. The programmer must make sure that
these relays are disengaged when not being used. The voltages that
appear on the DIRECT lines may be outside the range of voltages
tolerable by the driver circuits on the DR2p board.

Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

Every third wire in the cable is grounded. Every signal wire is
therefore adjacent to a ground, and thereby protected from
inductive crosstalk.

Gate Array Output Multiplex

The output multiplex function allows DFP to control channels
directly. Except the eight channels which are DIRECT functions,
the gate array outputs of 24 of the 32 channels are multiplexed in
opposition to DFP functions. Of the 24 multiplexed channels, not
all are done in the same way.

Channels 0-7 (“Port A” channels) and channels 8-15 (“Port B”
channels) are bytewise bidirectional, and can be enabled by signals
from the DUT. Channels 16-23 (“Port C” channels) are bitwise
bidirectional, and have additional functions, such as the strobes that
enable the Port A and Port B channels, that are unlike normal
microprocessor I/O ports.

Port A and B Channel Groups

When the DR2p is in the NORMal mode (ENORM* low), buffer
U5 pin 9 drives the pullup PNP transistor Q6, and buffer U2 pin 9
drives the pulldown NPN transistor Q22. This provides a signal
path from the gate array outputs to the amplifier in normal in-circuit
testing.

When ENORM?* is high, these buffers are turned off, and the gate-
array path is disabled. Signals DHO7* and DLO7 will take over
control. The buffers in this case are U4 pin 9 and U3 pin 9.
Assuming for the moment that EPT* is low, these two buffers,
instead of the buffers on the gate array outputs, will drive the two
amplifier transistors.

These buffers’ inputs are supplied, respectively, by NAND gate
U28 pin 3 and AND gate U40 pin 3. These two gates are active
only if the signal EPT 0-7 is high. Thus data stored in latch U53
will be available on the DR2p, but not driven onto the tester
channels until EPT 0-7 is true.

DFP can set EPT 0-7 to a constant true state (for example, in the
ADDRESS mode, where addresses are to be constantly enabled) or
can arrange to have EPT 0-7 controlled by a strobe signal coming
from the DUT. In the latter case, the strobe signal is brought in on
one of the Port C channels.

A full discussion of EPT 0-7 is found in the section titled “U74—
the I/O Control PAL” later in this chapter. The important message

Digital Function Processor User’s Guide-5th Ed. 3-31

Hardware—Theory of Operation

3-32

in the current section is that the Port A channels and the Port B
channels operate bytewise. It is impossible to make one bit an input
and simultaneously make one of its neighbors an output. It is
possible, however, to make Port A an input and port B an output, or
vice versa.

Inputting from Ports A and B is done using U55 and U52. The
readback operation can occur while the channel amplifiers are
driving. This feature is used in self testing, but may lead to difficult
troubleshooting of programs in development. If your program is to
read back data from the DUT on Port A or Port B, be sure to disable
the driver group in question or you will simply read back what you
are outputting.

Port C Channel Group

Whereas Ports A and B operate bytewise, Port C operates bitwise.
The Port C channel group also has functions that, depending on the
mode control, go beyond simple inputting and outputting of bits to
and from the DFP microprocessor. The serial port lines and the
handshake lines flow through the Port C channel group as well.

Each bit of the enable latch serves to enable its associated driver
amplifier. Thus it is possible to enable or disable the driver
amplifiers of channels 16 through 23 a bit at a time.

Each bit of the data latch U58, with the exception of channels 16
and 20, serves to determine the high-or-low state of its driver if that
driver is enabled. Thus, with the same two exceptions, DFP can set
any bit of Port C high, low, or high impedance.

Channels 16 and 20 are used either for serial data or for handshake
purposes. Drivers 16 and 20 are enabled by the corresponding bits
of the enable latch, but the high-or-low drive state is determined by
signals PT16R (for channel 16) and PT20R (for channel 20). These
signals come from the Address Decode PAL U73, and will be
discussed below in the section on U73.

Note that the bits of the data latch that correspond to channels 16
and 20 are inputs to that same PAL. This suggests a mode in which
channels 16 and 20 behave like the other six channels in the Port C

group.

Readback of the Port C channel group is accomplished by a tandem
pair of mux gates U45 and U56. The programmer is reminded that
this operation is capable of reading back the states of the channel
driver amplifiers if they happen to be enabled. That will override
any signal the DUT is trying to generate. Be sure to pay attention to
the Port C enable latch.

Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

The four signals of special interest originating on this page are 117,
118, 121 and 122—the detected signals coming from the DUT on
channels 17, 18, 21 and 22 respectively. They are used in
handshaking and in the receipt of serial data from a DUT serial
port. Handshaking and serial data bit timings are too precise to
allow the DFP computer to handle them by sampling in software—
they take a more direct route.

121 and 117 pass through U59 and go directly to J4 (the 80-pin
ribbon cable connector) pins 63 and 62. A signal coming from the
CCC via J4 pin 48 controls selection of this path. This path is used
when the CCC needs to receive serial asynchronous data from the
DUT. The alternative is for the CCC to receive EPT 8-15 and EPT
0-7, which are part of the handshake logic. In both instances, the
CCC has a path through which it can receive these real-time signals
directly, without any time distortion due to latching or sampling
latency.

Digital Function Processor User’s Guide-5th Ed. 3-33

Hardware—Theory of Operation

U73—the Address Decode PAL

Description of the functions of U73 follows the listing of the
Boolean equations below. The equations are expressed in
PALASM language.

; Programmed part is Teradyne P/N 46248 (046-248)

CHIP ADDR_DECODE PAL16L8 : Production unit in
GAL16V8

;1.2 3 45 6 7 8 9 10

A0 Al 1E PT20 PT16 ARDY BRDY DIR GBUSIN GND

;11 12 13 14 15 16 17 18 19 20
NC /READBACK /ES4 /ES3 /ES2 /ES1 /ESO PT20R PT16R

VCC
; Address | Register
; I
; 0 | PortA data
; 1 | PortB data
2 | PortC data
; 3 | PortC enable
; 4 | I/O Control reg
; 5 | PortA and PortB data
; 6 | Address
; I
EQUATIONS
PT16R =PT16
+ ARDY
PT20R =PT20
+ BRDY
/READBACK =DIR
+ GBUSIN

3-34 Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

ESO =/A0*/Al*/1E ; PORT ADATA 0
+ A0O*/Al* 1E ; 5
+/A0* Al* 1E ; 6
ES1 = A0*/Al*/1E ; PORT B DATA 1
+ AO*/Al1* 1E ; 5
+/A0* Al* 1E ; 6
ES2 =/A0* Al*/1E ; PORT C DATA 2
+/A0* Al* 1E ; 6
ES3 = A0* Al*/1E ; PORT C ENABLE 3
ES4 =/A0*/Al* 1E ; /0 CONTROL REG 4

PT16R is either the first bit of the Port C data register (it is signal
PT16 because it relates to GBUS<16>) or the level ARDY. ARDY
is used in handshaking and in serial data transmission to the DUT.
Be sure to set PT16 low when using handshaking or when sending
serial data. If PT16 remains high, the ARDY (TXDA) signal is
masked, and haphazard data transfer to the DUT CPU will result.
PT20R works the same way as PT16R, except with respect to
GBUS<20> and the BRDY (TXDB) signal.

The /READBACK signal, called READBACK?* in the schematic,
is asserted low when DIR and GBUSIN both are low. GBUSIN,
controlled by logic on the CCC, is high when the CCC is
transmitting to the GBUS and low when taking data from the
GBUS. READBACK places 24 bits of data from the DUT on the
GBUS via the bus input multiplexers U56 , U55 and U52.
READBACK is also used in selftest, to allow a CCC to read back
data from the Port A, B, and C channel amplifiers. In most
applications, be sure to disable the channel drivers on the DUT
lines that you wish to read back.

ESO through ES4 decode addresses of data latches on DR2p.
Some latches have multiple addresses, e.g., Port A data can be
affected by writes to address 0, 5 or 6. Address 0 writes to Port A
alone. Addresses 5 and 6 write to both Port A and Port B latches.
These equations implement the logic of the register maps given
earlier in this document. The PTLATCH signal, which is common

Digital Function Processor User’s Guide-5th Ed. 3-35

Hardware—Theory of Operation

3-36

to all latches, actuates the latches on DR2p. The latches themselves
respond or not according to their individual addresses as decoded
by U73. Below is a list of latches.

U53: ESO: Port A data

U54. ES1. Port B data

U58: ES2: Port C data

U57: ES3: Port C enable

U76 and U26: ES4: mode controls, DIRECT relays

Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

U74—the 1/O Control PAL

Description of the functions of U74 follows the listing of the
Boolean equations below. The equations are expressed in
PALASM language.

; Programmed chip is Teradyne p/n 46247 or 046-247

CHIP I0_CONTROL PAL16L8 ; Production unit in GAL16V8

;1 2 3 45 6 7 8 9 10
PAOO PAO1 PAIO PAI1 PBOO PBO1 PBIO PBI1 122 GND

;11 12 13 14 15 16 17 18 19 20

121 LATCHB EPT8-15118 117 NC1 NC2 LATCHA EPTO-7 VCC

EQUATIONS
EPTO-7 = /PAOO */PAO1 ; PORT A STATIC OUTPUT

+ /PAOO * PAO1 * /117 ; PORT ADYNAMIC, OE
LOW

+ PAOO */PAOL1 * 117 ; PORT ADYNAMIC, OE
HIGH
EPT8-15= /PBOO */PBO1 ; PORT B STATIC OUTPUT

+ /PBOO * PBO1 */121 ; PORT B DYNAMIC, OE
LOW

+ PBOO0*/PBO1* I21 ; PORT B DYNAMIC, OE
HIGH
LATCHA = /PAIO * /PAI1 ; PORT A TRANSPARENT
INPUT

+ /PAIO * PAI1 * /118 ; PORT A STROBE LOW

+ PAIO * /PAI1 * 118 ; PORT A STROBE HIGH
LATCHB = /PBIO * /PBI1 ; PORT B TRANSPARENT
INPUT

+ /PBIO * PBI1 * /122 ; PORT B STROBE LOW

+ PBIO */PBI1 * 122 ; PORT B STROBE HIGH

Digital Function Processor User’s Guide-5th Ed. 3-37

Hardware—Theory of Operation

3-38

Pins 1 through 8 are latched in U76 and do not have explicit names
in the schematic. However, these bits are named in the discussion
of Block 1, Offset 2 earlier in this

document.

The information latched in U76 implements the input and output
modes of Ports A and B. This latch is combined in a 16-bit word
with U26, which controls the relays. A 16-bit write operation is
required with the relay information in the high byte. An attempt at
an 8-bit write to U76 will disturb the relay settings and be very
difficult to debug.

Port A and Port B have three output modes and three input modes
each.

Output Modes
The output portion of the port can be “static,” i.e., its EPT signal

constant, causing the driver amplifiers to be on at all times. The
output portion of the port can also be “dynamic,” i.e., its EPT signal
can be controlled by a signal originating on the DUT, allowing the
DUT CPU to view the port as a virtual input port on its own data
bus. The enabling signal for output Port A is I117. 117 comes from
the DUT on channel 17. It is resolved as RESP<17> at U45.

The CCC can read 117 conventionally as part of the Port C channel
group. The logic in this PAL also lets 117 be used as a strobe to
enable the Port A drivers to implement the virtual DUT input port
function. According to the bit pattern written into latch U76, 117

can be a high-going enable (i.e., enabling the Port A amplifiers
when 117 is high) or a low-going enable.

Just as signal 117 serves Port A as an enable and is controlled by
bits PAOO and PAO1, signal 121 serves Port B and is controlled by
bits PBOO and PBOL1. Port A and Port B do not have to be in the
same output mode, i.e., one can be dynamic while the other is static,
or one can be dynamic with a high strobe while the other is
dynamic with a low strobe, and so on.

Input Modes
The input sides of these two ports also have three modes. First, the

port can be “transparent.” Any time the CCC reads the port, the
current conditions of the port’s eight channels will be transferred to
the DFP computer. The LATCHA signal (LATCHB, if discussing
Port B) is high as it goes to the input muxes U52 (U55 for
LATCHB). The READBACK?* signal allows these muxes to drive
the GBUS.

DFP also allows either Port A or B, or both, to serve as virtual DUT
output ports. In this case, the port’s state can be latched by a signal

Digital Function Processor User’s Guide-5th Ed.

Logic Desigh—DR2p

coming in from the DUT. In this mode, the LATCHA or LATCHB
signal is low most of the time. The signal is pulsed high only when
the state is to be latched. DFP can then use the READBACK*
signal to read the latched data.

In the latched modes, LATCHA follows the DUT-originated signal
118 or its complement, depending on the states of PAIO and PAIL.
Similarly, LATCHB follows 122 or its complement depending on
the states of PBIO and PBI1. 118 and 122 come from the DUT on
channels 18 and 22 respectively, whose signals are resolved to
RESP18 and RESP22. These channels are associated with
corresponding channel drive amplifiers in the Port C group. Be sure
to disable the channel driver amplifier on any channel you wish to
use to listen to a DUT signal.

Significant Features of Handshaking
and Serial Ports

The bulk of the circuitry associated with handshaking and serial
interchanges is located on the CCC, as discussed in the Channel
Control Card section of this chapter. Below is a summary of the
significant features of the DR2p.

» The DR2p channels relevant to handshaking and serial data
exchange are in the Port C group, i.e., 16 to 23.

» The two relevant high-speed, nonlatched signals that go from the
CCC to DR2p are J4-45 and J4-47. They are labeled ARDY and
BRDY. They carry handshake information (i.e., “Port A is
Ready”) in the handshake mode, and carry a serial asynchronous
bitstream in serial mode.

» The two relevant high-speed, nonlatched signals that go from the
DR2p to the CCC are J4-63 and J4-62. The CCC, using a signal
on J4-48, chooses whether to connect them to 121 and 117 (serial
bitstreams coming from the DUT) or to EPT8-15 and EPTO-7
(handshake signals noting the fact that the DUT has enabled the
Port A or Port B channel driver amplifier group).

» These two pairs of high-speed signals are used either in
handshaking or in serial data exchange, but not both
simultaneously. If the EPT lines are selected at U59, handshak-
ing isinuse. If 117 and 121 are selected at U59, serial data
exchange is in use.

* Port C, like Port A and Port B, can drive data out to the DUT as
well as receive it. Be sure to disable the Port C enable bits for the
channels you use as inputs from the DUT.

Digital Function Processor User’s Guide-5th Ed. 3-39

Hardware—Theory of Operation

Logic Desigh—Channel Control Card

3-40

The Channel Control Card is an ISA-bus board that occupies part of
the input-output space of the DFP computer. It contains registers,
counters, serial peripheral ports, timers and miscellaneous logic
that controls the DR2p board. There is one CCC for each DR2p.
They are connected to each other by an 80-conductor ribbon cable.
DFP as a system can support up to four such pairs.

Different CCC/DR2p pairs in a system can be in different modes.
In a flash-in-free-air application, for example, one pair is set up as
an address counter and another pair is set up to exchange data in
parallel bytes.

Most software operation in the DFP computer is polled rather than
interrupt-driven.

Connectors, Signal Names, and
Cable Pins

The edge fingers which plug into the computer motherboard are
labeled A, B, C and D. The 80-pin connector labeled J1 connects
pin for pin with the 80-pin connector labeled J4 on the DR2p.
Some signal names on the DR2p are not exact matches for the
names of the corresponding functions on the CCC. Most cable pin
signals are immediately buffered on the DR2p and are not named
until buffered. In the following table, the buffered names are used
where appropriate names do not exist for the raw signals.

Table 3.5 Cable Pin Numbers, Signal Names

Cable DR2p Name _ CCC name
Pin Number (buffered as appropriate)

1 gndl gnd
2 GBUS<0> PO
3 GBUS<1> P1
4 gnd gnd
5 GBUS<2> P2
6 GBUS<3> P3
7 gnd gnd
8 GBUS<4> P4
9 GBUS<5> P5
10 gnd gnd
11 GBUS<6> P6

Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

Table 3.5 Cable Pin Numbers, Signhal Names

Cgble DR2p Name _ CCC name
Pin Number (buffered as appropriate)

12 GBUS<7> P7

13 gnd gnd
14 GBUS<8> P8

15 GBUS<9> P9

16 gnd gnd
17 GBUS<10> P10
18 GBUS<11> P11
19 gnd gnd
20 GBUS<12> P12
21 GBUS<13> P13
22 gnd gnd
23 GBUS<14> P14
24 GBUS<15> P15
25 gnd gnd
26 GBUS<16> P16
27 GBUS<17> P17
28 gnd gnd
29 GBUS<18> P18
30 GBUS<19> P19
31 gnd gnd
32 GBUS<20> P20
33 GBUS<21> P21
34 gnd gnd
35 GBUS<22> P22
36 GBUS<23> P23
37 gnd gnd
38 GBUSENABLE* BEN*
39 DIR BIE*
40 gnd gnd
41 PTLATCH PCK
42 gnd gnd
43 gnd gnd
44 GBUSIN BDIR
45 ARDY ARDY
46 gnd gnd
47 BRDLY BRDY
48 no name CSEL

Digital Function Processor User’s Guide-5th Ed.

3-41

Hardware—Theory of Operation

3-42

Table 3.5 Cable Pin Numbers, Signhal Names

Cgble DR2p Name _ CCC name
Pin Number (buffered as appropriate)

49 gnd gnd

50 AO PAO

51 Al PA1

52 gnd gnd

53 1E PA2

54 ESY* PESY*
55 gnd gnd

56 DSY* PDSY*
57 ISTB* PIST*
58 gnd gnd

59 DSTB* PDST*
60 EPT* PPT*

61 gnd gnd

62 EPTO-7 PCA

63 EPT8-15 PCB

64 gnd gnd

65 Vpp Vpp

66 Vpp Vpp

67 +18 +18 volts
68 +18 +18 volts
69 -18 -18 volts
70 DIRECT25 TX232A
71 DIRECT26 RX232A
72 gnd gnd

73 DIRECT27 TX232B
74 DIRECT28 TX232B
75 gnd gnd

76 DIRECT29 n/c DX <29>
77 DIRECT30 n/c DX<30>
78 gnd gnd

79 DIRECT31 n/c

80 not used SP1

Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

CCC Address Management

Each CCC uses several addresses, as described below. These must
not overlap or collide with any other addresses used in the DFP
computer, or unpredictable operation will result.

The DFP computer will see each CCC at a set of addresses
governed by the DIP Switch SW1. An open switch represents a
“true” bit. Note that only bits 3 through 9 of the address bus
participate in this comparison.

Address bits 1, 2, 12, 13, and 14 are used on the CCC as well. Bits
0, 10 and 11 are not used at all.

Bits 1 through 2 are referred to as the “Offset.”
Bits 3 through 9 are referred to as the “Card address.”
Bits 12 through 14 are referred to as the “Block address.”

The address of an individual register has contributions from the
Card address, the Block address, and the Offset.

The following diagram illustrates the assignment of address bits to
functionalities. B represents a Block, C a Card, O an offset, and X a
don’t care.

XxBBB xxCC CCCC COOx

Offset Contribution

The Offset address has two bits, allowing four possible values.
Because the LSB of the physical address is not used, the Offset
contribution can have the following values:

Block and Card are both zero.

0x0000
0x0002
0x0004
0x0006

For example, to place the CCC 0 (zero) at address 0x5384, set the
board address switches as follows: choose Block address 5 and
Offset address 4. The addition of all these contributions looks like
Table 3.6 below. A dot “.” represents “don’t care.”

Digital Function Processor User’s Guide-5th Ed. 3-43

Hardware—Theory of Operation

Table 3.6 Example of Board Address Settings

ADDRESS bit position

SW1 Pin number

BLOCK Address 5

OFFSET Address 4

15 14

Sum of all three contributions

13 12 1 10 9 8 7 6 5 4 3 2 1 O
1

= 0x0380

= 0x5000

= 0x0004

=0x5384

3-44

Note:

To troubleshoot the recognition of a Card address, probe pin 19 of
U3. You need an extender, as this chip is next to the A connector.

Card Contribution

The Card address has seven bits, allowing 128 possible board
addresses. With Block and Offset addresses both zero, the Card
address contribution can have the following range:

0x0000
Ox03F8

Lowest possible Card address:
Highest possible Card address:

The pre-defined Card addresses are as follows:

0x0380 =card O
0x0388 = card 1

0x0390 = card 2
0x0398 = card 3

Figure 3.5 DIP Switch Settings

eonenag | pHiansnoad
B0ennaag | +Beenoa0g

SW1, position 1 must always be off.

Block Contribution

The Block address has three bits, allowing eight values. Although
they are referred to as Blocks 0 through 7, these numbers actually
represent contributions to the physical addresses as follows:

Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

Card and Offset are both zero.

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

Channel Contirol Card
Hardware Details

The following sections discuss Channel Control Card hardware.

~No ok~ WNEO

The IBUS and Its Controls

An internal 16-bit bus called IBUS buffers the computer
motherboard’s data bus. Chips U1 and U2 are bidirectional buffers
which are enabled by the recognition of the Card address. Their
direction is governed by the RD* signal, which is a buffered
version of the motherboard signal -IOR entering the CCC at pin B
14. Data flows to the motherboard when RD* is low, and from the
motherboard when RD* is high.

An array of PAL chips U6 through U10 governs the selection of the
various registers into which data is written on write cycles and from
which data is read on read cycles.

A delay system composed of U12A, U13, and U11 produces a
delayed write strobe to the DR2p when DR2p registers are being
written.

Counters Used as Output Port Registers

Counters U14 through U19 are used as latches for Ports A, B, and
C, simplifying and accelerating the generation of addresses in flash-
in-free-air applications. The computer can produce the next address
simply and quickly using a small number of instructions.

Refer to Table 3.3 (Programmer’s 10 Port Map) earlier in this
chapter, and note that Block 0 operations affect these counters. The
text following the Port Map explains how to control them.

The hardware realization involves a small number of signals: WR*
coming from U4 pin 7 clocks the counters. PD1 is a low signal
from the pulldown resistor. If E3* from U9 pin 16 is low, the
counters will count. The UpDown (UD) signal, which originates at
U39 pin 6, determines the direction.

Digital Function Processor User’s Guide-5th Ed. 3-45

Hardware—Theory of Operation

3-46

Port A and Port B

Ports A and B operate as described in the section titled “Register
Descriptions: Block O - Address Counter” earlier in this chapter. To
load all 24 bits of the starting address, first write the 16 bits
corresponding to Ports A and B at offset 0, then write the MS byte
to Port C at offset 2. To load only 16 bits of starting address into
Ports A and B, write instead to offset 4.

Port C

The Port C channel group is the upper 8 bits of the 24 bit counter.
Its behavior is different from that of Ports A and B. Port C is bit-
selected and contains handshake and serial capabilities.

Serial Port, Logic Levels, and RS232 Levels

The Zilog/Hitachi 85C30 is equipped with a 7.3728 MHz crystal.
The 9.216 MHz crystal shown on some schematics is not installed.
The location is left open for you to customize if necessary. If you
have not worked with the 85C30 or its relatives before, Teradyne
advises you to contact Hitachi or Zilog and obtain the
programmer’s guides for this sophisticated and often puzzling chip.
You can obtain some understanding of it from studying Teradyne
example programs, but those programs use only a small fraction of
this chip’s capabilities.

DFP is equipped to talk to DUT serial asynchronous ports using
either “logic” levels (i.e,. 5 volts mark, 0 volts space) or EIA RS232
levels (+15>mark>+5, -5>space>-15). Each CCC/DR2p pair has
two transmitters and two receivers. Transmissions at logic level
flow to the DUT through the channel drive amplifiers. Reception at
logic levels flows to the 85C30 through mux gates and PAL chips.
Transmissions at RS232 level flow to the DUT through relay-
connected DIRECT channels on the DR2p. Channel driver
amplifiers are not used, because they cannot accommodate the
necessary voltage swings. Translation to RS232 levels is done with
U32, a MAX242 level shifter chip. The MAX generates its own
high and low voltages.

Reception at RS232 levels also flows through the DIRECT
channels and uses the MAX242 chip to convert back to logic levels.

The logic level transmissions take the following route: the 85C30’s
transmitter outputs (pins 16 and 29 of U36) drive inputs to the PAL
U33, as well as the inputs to the level shifter U32. TDA and TDB
pass through the jumper block J2 to become TDA1 and TDBL1.
They are sent to DR2p as ARDY and BRDY on J1 pins 45 and 47.

Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

Received logic level signals enter the CCC on J1 pins 62 and 63,
PCA and PCB. Chip U26 converts these to AACK1 and BACK1.
These signal lines are used alternatively in handshaking, and one
CCC cannot do both handshaking and serial communication at the
same time. After passing through jumper block J2, the signals are
called AACK and BACK. They enter the PAL U33. See equations
above for U33 output pins 12 and 13, RXDA and RXDB. The PAL
selects whether the 85C30 will obtain its RXD signals from the
MAX242 or from the AACK and BACK lines.

Handshake Flipflops

The two signaling flipflops U30A and U30B work identically, so

only the A side is described here. When handshaking is established,
the flipflop is set every time the CCC writes to the Port A data
register on the DR2p. The signal RDYA goes high, indicating to the
DUT that fresh data is available to take.

Immediately after writing this byte in the Port A data latch, the DFP
CPU can look up the next, thereby eliminating overhead. It must
not write it, however, until it finds that DUT CPU has cleared the
signaling flipflop.

RDYA's path to the DUT is as follows: RDYA passes through PAL
U33 and emerges as TDA. (Remember, these lines can be used for
serial data when they are not being used for handshaking.) TDA
passes through jumper block J2 and becomes TDA1. TDA1 is
buffered by U29, lower center. The buffered signal is known as
ARDY, and is sent to DR2p on J1 pin 45.

The discussion of the DR2p, above, traced this signal out to Port C
channel 16 via the signal PT16R. The DUT CPU, by running a
program designed for the purpose, knows that fresh data is
available.

The DUT CPU inputs the data onto its data bus by generating a
pulse of the appropriate polarity on the DR2p’s channel 17. The
DUT CPU, having taken the data, can write the data into flash
memory, a process that takes several microseconds. The pulse the
DUT used to input the data becomes the signal EPTO-7 as was
discussed in the section on the DR2p board earlier in this chapter.
EPTO-7 finds its way to pin 62 of the 80-pin cable. It arrives at the
CCC where it gets the new name “PCA.”

PCA is buffered by U26 and gets another new name “AACK1.”
AACK1 passes through jumper block J2 and changes its name, for
the last time, to AACK. AACK goes to the gate USA and resets the
signaling flipflop. Thus, the signaling flipflop is reset when the

DUT CPU inputs the data that was placed in the Port A data latch.

Digital Function Processor User’s Guide-5th Ed. 3-47

Hardware—Theory of Operation

By this time, the DFP CPU has looked up the next byte for Port A
and is ready to write it. Before writing, it must check to see that the
flipflop has been cleared. In addition to signaling the DUT CPU
through the path described, the flipflop signals the DFP CPU as
well. The RDYA signal enters PAL U33 and emerges as TDA,
becoming TDAL. The DFP CPU can read the state of TDA1 by
means of input port U28. A DFP program can loop on this bit and
write the new data as soon as the old data has been taken. That way,
neither processor waits very long for the other. Such a loop should
include a timeout feature to prevent hangups in the case of DUT
failures.

Jumper Block and Custom Daughterboard
Provision

The jumper block J2, referred to in the descriptions above, is a
34-pin header that normally has jumpers on it to connect certain
signal lines from one side to the other. Its purpose is to allow small
amounts of customization to handle special cases without creating
entirely new versions of the CCC. You can design a small custom
daughterboard to mate with this connector, or you can use a 34-
conductor ribbon cable to connect the CCC with a larger custom
daughterboard located further from the CCC.

Normal jumper configuration is shown in the table following.

Table 3.7 Normal Jumper Configuration

Signal Pin# Connection Pin # Signal
TX232A -> J1-70 1 -—--jpr---- 2 T10UT
RX232A -> J1-71 3 -—--jpr---- 4 R1IN
gnd 5 PC trace 6 gnd
TX232B -> J1-73 7 8 T20UT
RX232B -> J1-74 9 10 R2IN
gnd 11 PC trace 12 gnd
DX<29> -> J1-76 13 14 n/c
DX<30> -> J1-77 15 16 n/c
TDA 17 we-jpr---- 18 TDA1
TDB 19 ———-jpr---- 20 TDB1
gnd 21 PC trace 22 gnd
AA CK 23 ----jpr---- 24 AACK1
BACK 25 -—--jpr---- 26 BACK1

3-48 Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

Signal Pin# Connection Pin # Signal

gnd 27 PC trace 28 gnd

+18 volts 29 PC trace 30 +18 volts

-18 volts 31 PC trace 32 -18 volts

+5 volts 33 PC trace 34 +5 volts
DAC and Vpp

Many nonvolatile technologies require an elevated voltage at one
pin in order to write. Some CPU families, e.g., the Motorola
68HCO5 family, require a single 9-volt signal to start their
bootstrapping operations. DFP provides a programmable voltage
source for this purpose. Please note that the £18 volt supplies which
power this part of the circuitry originate in the tester and find their
way to the CCC from the DR2p over the 80-conductor ribbon cable.
They do not originate in the DFP computer.

Timers

A timer chip 82C53 is provided to simplify timeout programming.
See Intel’s programming guides for information about this IC.

Digital Function Processor User’s Guide-5th Ed. 3-49

Hardware—Theory of Operation

PAL Equations

Below are the PAL equations for the Channel Control Cards.

U7 Pattern 0320

Title PT2 Address Decode PAL
Pattern 0320-3
Revision 3.0

CHIP ADDR4 PAL16L8

; Production unit in GAL16V8

; Provides misc address decodes.
;Name Pin Dir Function

A2 ;1 IN Address 2

Al ;2 IN Address1

Al2 ;3 IN Address 12

Al3 ;4 IN Address 13

Al4 ;5 IN Address 14

/IOW ;6 IN IOW

/IOR ;7 IN IOR

NC1 ;8 IN No function.

PCK ;9 IN DR2 cksignal.

GND ;10 GND GND

/GRP ;11 IN Card enable signal.

/WS ;12 OUT Wait state indicator - Default-wait/No-wait.
/WEN ;13 OUT Enable OWS/IO_CH_RDY/IO_CS 16 to bus.
ITRG2 ;14 OUT Trigger CTC channel 2.

/ITRG1 ;15 OUT Trigger CTC channel 1.

/ITRGO ;16 OUT Trigger CTC channel 0.

NWS ;17 OUT No wait-states signal to bus.

NC3 ;18 OUT No function.

NC4 ;19 OUT No function.

VCC ;20 VCC VCC

EQUATIONS

WS =/A12*/A13* Al4* GRP ;4. X wait if CTC

+ Al2*/A13* Al4* GRP ; 5.X wait if SIO

+ Al12* A13*/A14* GRP *IOR ; 3.X wait if READ PORTS
INWS =/A12 * [A13 * Al4 * GRP ;4. X wait if CTC

+ Al2*/A13* Al4* GRP ; 5.X wait if SIO

+ Al12* A13*/A14* GRP *IOR ; 3.X wait if READ PORTS
WEN = GRP *IOR ;read

+ GRP * IOW ; write

TRGO
TRG1
TRG2

Al12* A13* A14*/A2*/Al* GRP*IOW ;W 7.0
Al12* A13* A14*/A2* Al* GRP*IOW ;W 7.2
Al12* A13* Al4* A2*/Al* GRP*IOW ;W 7.4

3-50 Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

U8 Pattern 0321

Title PT2 Address Decode PAL
Pattern 0321-1
Revision 1.0

CHIP ADDR3 PAL16L8 : Production unit in GAL16V8
: Provides misc address decodes etc. for DR2 card.
:Name Pin Dir Function

A2 ;1 IN Address 2

Al ;2 IN Address 1

Al12 ;3 IN Address 12

Al13 ;4 IN Address 13

Al4 ;5 IN Address 14

/IOW ;6 IN IOW

/IOR ;7 IN IOR

NC1 ;8 IN No function.

PCK ;9 IN DR2 ck signal.

GND ;10 GND GND

/GRP ;11 IN Card enable signal.
SP1 ;12 OUT No function.

PA2 ;13 OUT Address PA2 to DR2.
PA1 ;14 OUT Address PAl to DR2.
PAO ;15 OUT Address PAO to DR2.

/PDST ;16 OUT
/PIST ;17 OUT
/PDSY ;18 OUT
/PESY ;19 OUT

DR2 gate array data strobe.
DR2 gate array instruction strobe.

DR2 gate array data sync.

DR2 gate array enable sync.

VCC ;20 VCC VCC

EQUATIONS

PAO = A12*/A13*/A14* /A2 * /Al * GRP :1.0
+ Al2* A13*/A14* /A2 * Al* GRP :3.2
+ Al2* A13*/A14* A2* Al* GRP :3.6

PAl =/A12*/A13*/A14* /A2 * Al* GRP :0.2
+/A12 * /A13 * /A14 * A2 * /Al * GRP 0.4
+/A12 * /A13 * /A14* A2* Al* GRP :0.6
+ A12 */A13 * /A14 * /A2 * /A1 * GRP 1.0
+ Al2* A13*/A14* A2*/Al* GRP 3.4

PA2 =/A12*/A13 */A14* /A2 * Al* GRP :0.2
+/A12 * /A13 * [A14 * A2 * /Al * GRP 0.4
+/A12 * /A13 * /A14 * A2* Al* GRP 1 0.6
+ A12*/A13 */A14 * /A2 * Al* GRP 1.2
+ Al2* A13*/A14* A2* Al* GRP :3.6

PIST =/A12* A13*/A14*/A2*/A1* GRP */PCK ;W 2.0

PESY =/A12* A13*/A14*/A2* Al* GRP */PCK ;W 2.2
PDSY =/A12* A13*/A14* A2*/A1* GRP */PCK ;W 2.4
PDST =/A12* A13*/A14* A2* Al* GRP*/PCK ;W 2.6

Digital Function Processor User’s Guide-5th Ed.

3-51

Hardware—Theory of Operation

U9 Pattern 0322

Title PT2 Address Decode PAL
Pattern 0322-2
Revision 2.0

CHIP ADDR2 PAL16L8 ; Production unit in GAL16V8
; Provides misc address decodes.
:Name Pin Dir Function

A2 ;1 IN Address?2

Al ;2 IN Address1

Al2 ;3 IN Address 12

Al3 ;4 IN Address 13

Al4 ;5 IN Address 14

/IOW ;6 IN IOW

/IOR ;7 IN IOR

NC1 ;8 IN No function.

PCK ;9 IN DR2cksignal.

GND ;10 GND GND

/GRP ;11 IN Card enable signal.

/E7 ;12 OUT Misc register ck.

/E6 ;13 OUT Port C I/P data enable.

/E5 ;14 OUT PortB I/P data enable.

/E4 ;15 OUT Port Al/P data enable.

/E3 ;16 OUT Address counter enable.

/E2 ;17 OUT Counter MSB/Port C write enable.
/E1 ;18 OUT Counter MID/Port B write enable.
/EO ;19 OUT Counter LSB/Port A write enable.
VCC ;20 VCC VCC

EQUATIONS

EO =/A12*/A13*/A14*/A2*/Al* GRP *IOW ;W 0.0
+/A12 * /A13 * /Al4* A2*/A1* GRP*IOW ;W 0.4
+ A12 */A13*/A14 * /A2 * /A1 * GRP *IOW ;W 1.0
+ A12 */A13*/A14*/A2* A1* GRP*IOW ;W 1.2
+/A12* A13*/Al4* GRP *IOW ;W 2.X
+ Al12* A13*/A14*/A2*/A1* GRP*IOW ;W 3.0
+ A12* A13*/A14* A2* A1* GRP*IOW ;W 3.6

El =/A12*/A13*/A14*/A2*/Al* GRP *IOW ;W 0.0
+/A12 * /A13 * /Al4* A2*/A1* GRP*IOW ;W 0.4
+ A12 */A13*/A14*/A2* A1* GRP*IOW ;W 1.2
+/A12* A13*/Al4* GRP *IOW ;W 2.X
+ A12* A13*/A14*/A2* A1* GRP*IOW ;W 3.2
+ A12* A13*/A14* A2* A1* GRP*IOW ;W 3.6

E2 =/A12*/A13*/A14*/A2* Al* GRP*IOW ;WO0.2
+ A12 */A13*/A14 * /A2 * /A1 * GRP *IOW ;W 1.0
+ A12* A13*/Al14* A2*/A1* GRP*IOW ;W 3.4

E3 =/A12*/A13*/A14* A2* Al* GRP*IOW ;W 0.6

3-52 Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

E4 = Al2* A13*/A14*/A2*/A1* GRP*IOR ;R 3.0
+ Al2* A13*/A14* A2* Al* GRP*IOR ;R 3.6
+/A12 * /A13 * /A14 * /A2 * /A1 * GRP *IOR ;R 0.0
+/A12 * /A13 */A14 * A2*/A1l* GRP*IOR ;R 0.4

E5 = Al2* A13*/A14*/A2* A1* GRP*IOR ;R 3.2
+ Al2* A13*/A14* A2* Al* GRP*IOR ;R 3.6
+/A12 * /A13 * /A14 * /A2 * /A1 * GRP *IOR ;R 0.0
+/A12 * /A13 */A14 * A2*/A1l* GRP*IOR ;R 0.4

E6 = Al2* A13*/A14* A2*/Al* GRP*IOR ;R34
+/A12 * /A13 * /A14 * /A2 * A1* GRP*IOR ;R 0.2

E7 =/A12* A13* Al4* A2* Al* GRP*IOW ;R 6.6

U10 Pattern 0323

Title PT2 Address Decode PAL
Pattern 0323-4
Revision 4.0

;Revised 2/18/94

;Changed the sense of W16 from /W16 to W16

;Made reads from port C (3.4) 16 bit.

;Dropped SIO (5.X) from W16.

CHIP ADDR1 PAL16L8 ; Production unit in GAL16V8

; Provides misc address decodes.

:Name Pin Dir Function

A2 ;1 IN Address 2
Al ;2 IN Address1
Al2 ;3 IN Address 12
Al3 ;4 IN Address 13
Al4 ;5 IN Address 14
/IOW ;6 IN IOW
/IOR ;7 IN IOR
NC1 ;8 IN No function.
PCK ;9 IN DR2cksignal.
GND ;10 GND GND
/GRP ;11 IN Card enable signal.
/ISTAT ;12 OUT Status read enable.
W16 ;13 OUT 16 bit transfer acknowledge signal.
/DAC ;14 OUT DAC write ck.
/SIO ;15 OUT SIO write ck.
/ICTC ;16 OUT CTC write ck.
/DRWE ;17 OUT DR2 write enable.
/DRRD ;18 OUT DR2read enable.
NC2 ;19 OUT No function.
VCC ;20 VCC VCC

Digital Function Processor User’s Guide-5th Ed.

3-53

Hardware—Theory of Operation

EQUATIONS
STAT =/A12* A13* Al4*/A2*/A1* GRP*IOR ;W 6.0
DAC =/Al12* A13* Al4* A2*/A1* GRP*IOW ;W 6.4

CTC =/A12*/A13* Al4* GRP ;W 4X

SIO = A12*/A13* Al4* GRP ; W5.X

DRWE =/A12*/A13*/A14*/A2* A1* GRP*IOW ;W 0.2
+/A12 * /A13 * /A14 * A2* /Al * GRP*IOW ;W 0.4
+/A12 * /A13 * /A14 * A2* A1* GRP*IOW ;W 0.6
+ Al2 */A13 */A14 * /A2 * /A1 * GRP *IOW ;W 1.0
+ Al12 */A13 */A14 */A2* A1* GRP*IOW ;W 1.2
+/A12* A13 */A14 * GRP*IOW ;W 2X
+ Al2* A13*/A14* GRP*IOW ;W 3.X

DRRD = A12* A13*/Al4* GRP*IOR ;W 3.X

W16 =/A12*/A13*/A14*/A2*/Al* GRP ; RW 0.0
+/A12 * /A13 * /A14 * A2 * /Al * GRP ; Rw 0.4
+/A12 * /A13 * /A14 * /A2 * A1* GRP*IOR ; R0.2

+ Al12 */A13 */A14 * /A2 * Al * GRP yRW 1.2
+/A12* A13 */A14 * GRP ; RW 2.X

+ Al2* A13*/A14*/A2* Al* GRP RW 3.2
+ Al2* A13*/A14* A2* Al* GRP ; RW 3.6

+ Al2* A13*/A14* A2*/Al* GRP*IOR ; R34

Ul1 Pattern 0324

Title PT2 Timing Generator
Pattern 0324-3
Revision 3.0

CHIP DR2 PAL16L8 ; Production unit in GAL16V8
; Provides timing for extended cycle to write to DR2 card.

:Name Pin Dir Function

/IN ;

1 IN Go signal. Rising edge initiates a DR2 write cycle.
/T1 ;2 IN Delaylinetap 1
/T2 ;3 IN Delaylinetap 2
/T3 ;4 IN Delaylinetap 3
/T4 ;5 IN Delaylinetap 4
/T5 ;6 IN Delaylinetap5
SPBO ;7 IN Future board functionality.
SPB1 ;8 IN Future board functionality.
UD ;9 IN Future board functionality.
GND ;10 GND GND

/IDRRD ;11 IN

[FIN ;12 OUT Clear cycle flip-flop.

/PC ;13 OUT Port C output bus enable.
/PB ;14 OUT Port B output bus enable.
3-54

DR2 read cycle.

Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

/PA ;15 OUT Port A output bus enable.
/PCK ;16 OUT DR2 ck pulse.

/BIE ;17 OUT DR2 input data enable.
BDIR ;18 OUT DR2 245 direction control.
/BEN ;19 OUT DR2 245 enable control.

VCC ;20 VCC VCC

EQUATIONS
FIN = T1* T5

PC =IN
+ T3
+ T5
+/SPBO * SPB1 */UD

PB = IN
+ T3
+ T5
+/SPBO * SPB1 */UD

PA = IN
+ T3
+ T5
+/SPBO * SPB1 */UD

; SELFTEST LOOPBACK

BDIR = IN+ T1+ T2+ T3+ T4+ T5

BEN = T1* SPBO
T1*/SPB1
T1* UD
T4 * SPBO
T4 */SPB1
T4* UD
DRRD

+ + + + + 4+

BIE = DRRD

PCK = T4* T1

; T1+ T4 UNLESS LOOPBACK

Digital Function Processor User’s Guide-5th Ed.

3-55

Hardware—Theory of Operation

U31 Pattern 0325

Title PT2 SIO INTERFACE PAL
Pattern 0325-4
Revision 4.0

CHIP SIO PAL16R4 ; Production unit in GAL16V8

; Divides Xtal osc to provide CTC ck
; and provides a 250nS wait state in response to WS signal.

:Name Pin Dir Function

CK ;1 IN 8Mhz oscillator, async to PC bus ck.
/IRD ;2 IN IOR strobe.
/WR ;3 IN |OW strobe.

/SIO ;4 IN SIO address valid.
/ICTC ;5 IN CTC address valid.
WS IN Wait-state requested by address decodes.
NC1 ;7 IN No function.
NC2 ;8 IN No function.

FF ;9 IN Wait-state flip-flop output.

GND ;10 GND GND

/OE ;11 IN Output enable.

WAIT ;12 OUT PCIO_CH_RDY signal.

/ICLR ;13 OUT Clear wait-state flip-flop.

/QA ;14 OUT No-connect. Used for ck divider.
/QD ;15 OUT No-connect. Used for wait states.
/QC ;16 OUT No-connect. Used for wait states.
/QB ;17 OUT Divide by 4 ck for CTC timers.

NC3 ;18 OUT No function.

TRG ;19 OUT Set wait-state flip-flop.

VCC ;20 VCC VCC

EQUATIONS
QA = RD* WR ;Clr if RD and WR
+ /QA ;Count
QB = RD* WR ;Clr if RD and WR
+ /QB * /QA ;Count
+ QB* QA ;Hold
QC :=/FF ;Reset
+ /QC ;Count
QD =/FF ;Reset
+ /QD */QC ;Count
+ QD* QC ;Hold
TRG = WS
CLR = /QC */QD ;2 = 1 Wait-state
WAIT = FF ;Pass through

3-56 Digital Function Processor User’s Guide-5th Ed.

Logic Design—Channel Control Card

U33 Pattern 0326

Title PT2 SIO MULTIPLEX PAL
Pattern 0326-4
Revision 4.0

;Revised 2/02/94
; Added SMODE to TDA and TDA equations to disable handshake when SMODE high.

CHIP SIO PAL16LS8 ; Production unit in GAL16V8

:Name Pin Dir Function

TXDA ;1 IN Transmit data from SIO ch A.

TXDB ;2 IN Transmit data from SIO ch B.

SPBO ;3 IN Invert TXD/RXD ch A. O=normal, 1=invert.

SPB1 ;4 IN Invert TXD/RXD ch B. O=normal, 1=invert.
AACK ;5 IN Port C Multiplexed input data - RXDA or ACKA
BACK ;6 IN Port C Multiplexed input data - RXDB or ACKB
RDYA ;7 IN Handshake flip-flop A.

RDYB ;8 IN Handshake flip-flop B.

R2 ;9 IN Direct RS232 RXDA.

GND ;10 GND GND

R1 ;11 IN Direct RS232 RXDB.

RXDA ;12 OUT Receive datato SIO ch A.

RXDB ;13 OUT Receive datato SIO ch B.

SMODE ;14 IN Select serial mode - 0=DR, 1=direct RS232
PCSL ;15 IN Port C mode select - 0=ACK, 1=RXD

NC1 ;16 XX No function.

NC2 ;17 XX No function.

TDB ;18 OUT Port C Multiplexed output data - TXDA or RDYA
TDA ;19 OUT Port C Multiplexed output data - TXDB or RDYB
VCC ;20 VCC VCC

EQUATIONS
TDA = TXDA* PCSL */SPBO ;TXD select to DR
+ /TXDA * PCSL * SPBO :Inv TXD select to DR
+ RDYA * /PCSL * /ISMODE :RDY select to DR
TDB = TXDB* PCSL */SPB1 ;TXD select to DR
+ /TXDB * PCSL * SPB1 :Inv TXD select to DR
+ RDYB * /PCSL * /[SMODE :RDY select to DR
RXDA =/AACK * /[SMODE * /SPBO :DR serial data
+ AACK * /SMODE * SPBO :INV DR Serial data
+ R1 * SMODE * /SPBO :RS232 data
+/R1 * SMODE * SPBO JINV RS232 data
RXDB =/BACK * /SMODE * /SPB1 :DR serial data
+ BACK * /SMODE * SPB1 :INV DR Serial data
+ R2 * SMODE */SPB1 :RS232 data
+/R2 * SMODE * SPB1 JINV RS232 data

Digital Function Processor User’s Guide-5th Ed. 3-57

Hardware—Theory of Operation

U6 Pattern 0327

Title PT2 Address Decode PAL

Pattern 0327-1

Revision 2.0

CHIP ADDR5 PAL16L8 ; Production unit in GAL16V8

; Provides misc address decodes.

:Name Pin Dir Function

A2 ;1 IN Address 2
Al ;2 IN Address1
Al2 ;3 IN Address 12
Al3 ;4 IN Address 13
Al4 ;5 IN Address 14
/IOW ;6 IN IOW
/IOR ;7 IN IOR
RSTIN;8 IN Reset Input.
PCK ;9 IN DR2cksignal.
GND ;10 GND GND
/GRP ;11 IN Card enable signal.
/PTEN ;12 OUT Master PT2 enable signal to DR2 card.
PPT ;13 IN Input from misc register.
/RST ;14 OUT Reset board signal.
INC2 ;15 OUT No function.
/RCKB ;16 OUT Set RDY latch channel A.
/RCKA ;17 OUT Set RDY latch channel B.
/RSTB ;18 OUT Reset RDY latch channel B.
/RSTA ;19 OUT Reset RDY latch channel A.
VCC ;20 VCC VcCC

EQUATIONS
PTEN = PPT ; Inverter

RSTIN =/A12* A13* Al4*/A2* A1* GRP*IOW ;W 6.2
+ RSTIN

RCKA = Al2* A13*/A14*/A2*/Al* GRP *IOW ;W 3.0
+ A12* A13*/A14* A2* A1* GRP*IOW ;W 3.6

RCKB = Al2* A13*/A14*/A2* Al* GRP*IOW ;W 3.2
+ A12* A13*/A14* A2* A1* GRP*IOW ;W 3.6

RSTA

Al12 * /A13 */A14* A2*/Al* GRP*IOW ;W14

RSTB

Al12 * /A13*/A14* A2* Al* GRP*IOW ;W 1.6

3-58 Digital Function Processor User’s Guide-5th Ed.

Custom Example—Serial Boot 4

Pt2.ini Example—68HCL1FLcevvvevvveeiiiiiiiiinnnnnnns 4-3
Ptprog.c Example—68HCL11FL........cevvvvveiiiiiiiiiiiinnnn 4-3
Assembly Source Code—68HC11F1..........ccevvvereennnns 4-29

The 18XX DigFuncProc testsheet sends the subdirectory path and
arguments (ALPHADO) to slave.exe on the DF) computer to start the
appropriate ptprog.exe. The ptprog.exe program loads a boot
program (the .img file) into the 68HC11 RAM via the 68HC11

serial bootloader mode, passing the program to the 68HC11 serially
by way of TXDA. Also a serial number (18XX ALPHADO), date,

and time is passed to the 6811 at the end of the bootloader program.

The boot program, running internally from the 68HC11 RAM,
directs the 68HCL11 to first erase ten locations of EEPROM, then
load the ten bytes of customer data (the serial number, date, and
time) to the EEPROM. The 68HC11 boot program passes back a
PASS/FAIL indication to ptprog.exe, which passes the PASS/FAIL
information to the 18XX DigFuncProc testsheet.

Ptprog.exe can also be started from the DFP keyboard.

Figure 4.1 Serial Boot Interconnect Diagram

Unit-Under-Test Fixture DR2P Digital Function
Processor
Node 192 PORT A
Reset Node 103 Bit @ Channel
MoDA ode Bit 1 J Control
Node 194 Bit 2 Card @
MoDB
RxD Node 208 e
X
TYD Node 209 RxD
68HC11F1 PORT C

Custom Example—Serial Boot

PT2.INI File—68C11F1

Below is the pt2.ini file used in this example.

L,IC1,68HC11F1,eeprom.obj,82,0,0,0
R,eeprom.obj is the formated (compiled) eeprom.asm bootload file
R,format 82 = motorola type S record (eeprom.obj)

PTPROG.C File—68C11F1

Below is the ptprog.c file that boots the 68HC11F1.

/*
*** Serial Boot Example ***

Custom Application For Serial Bootload 68HC11F1 - to Program 10 bytes
of imbedded (internal) EEPROM.

Filename: ptprog.c
Component/s: 68HC11F1

Aliases : M68HC11F1, MC68HC11F1

Device Manufacturer: Motorola
Device Function: Microcontroller
IC Package: 68 pin plcc
Original Source: based on DFP A.3 - serial bootload example
Fixture Requirements: see Wiring below
Files Required: ptprog.exe (compiled ptprog.c)
pt2.ini (see pt2.ini below)
data file (see pt2.ini below)
Written with OS: DFP - B.O
18xx - F.0
To use this program with earlier versions
(either DFP or 18xx)
comment out the 'send18xxMsg()’
function call in the
print_Message() function.
Test Description:

68HC11F1 Microcontroller:8K ROM
256 Bytes RAM
512 Bytes EEPROM -
Byte/Bulk Erase

The ptprog program loads a boot program into the
68HC11 RAM via the serial bootloader mode, passing
the program to the 68HC11 serially by way of TXDA.
The boot program, runing internally from the 68HC11
RAM, directs the 68HC11 to first erase 10 locations
of EEPROM, and then subsequently load 10 bytes of

4-2 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

customer data to the EEPROM. The 68HC11 passes back
PASS/FAIL information and then proceeds to the monitor
routine which allows the user (in debug mode) to check
the contents of the 68HC11 memory (refer to monitor
function).

note:

The data is loaded into the default EEPROM addresses
starting at OXOE0O. However, in serial boot mode the
address for EEPROM starts at OXFEOO, hence the eeprom.asm
base address calls for 0OXFEOO, not OXOE0O. When the
boot program is finished and the 68HC11 is reset

the EEPROM base address will then be seen at 0XOEOO
as expected (default address configuration for EEPROM).
Please note that when using the monitor mode of this
program, the chip has not yet been reset so the
addresses to check for EERPOM data start with OxFEOQO.

Program Organization Outline:
1. open com ports and set up port parameters
2. get the arguments:
expects a 5 digit serial number
4. open files:1. pt2.ini -> retrieve:
device type
byte position
.img filename
2. eeprom.img (data file)
. store bootloader program (from datafile - see pt2.ini below)
6. store eeprom data:5 byte serial number
1 byte Year
1 byte Month
1 byte Day
1 byte Hour
1 byte Minute
. set up CCC/DR2P cards
8. load bootloader data to 68CH11

.1. Ptprog resets 68HC11 into serial boot-loader
mode.

.2. Ptprog passes to the 68HC11, one byte at a time,
the boot program with the variable data
(serial number) tacked on to the end.

.3. Ptprog delays apx. 5ms for 68HC11 to realize it
is time to run itself from the program
just loaded into its RAM. (refer eeprom.asm)

4. Ptprog sends the checksum to the 68HC11.
checksum = total program bytes plus 10 variable

data bytes.

.5. 68HC11 checks its receive buffer for the ptprog
checksum, and responds by sending the checksum
it also tallied to ptprog. (refer eeprom.asm)

.6. Both programs -- 68HC11 and ptprog -- compare
the two checksums. If either finds a mismatch,
the program will fail.

Note: ptprog will time out if 68HC11 does

(€21

~

Digital Function Processor User’s Guide-5th Ed. 4-3

Custom Example—Serial Boot

NOT send a checksum and the program
will fail.
.7. This step will be repeated up to 3 times to
try to successfully boot load the 68HC11.

9. Meanwhile - 6BHC11 does its 'thing": (refer the eepom.asm)

.1. If 6BHC11 compare checksums match, it proceeds to
erase the 10 address locations in EEPROM
for the variable data, else it proceeds
to FAIL.
.2. After 68HC11 erases the eeprom locations, it
loads the addresses with the variable data
After each eeprom byte write, the 68HC11
will read back and verify the write.
If any byte does not verify, the program
will proceed to FAIL.
.9. If 6BHC11 proceeds to FAIL at any time, it
complements the response regiseter (0x00->0xFF).
.10. The 68HC11 leaves the configure register
in the default mode. (EEPROM = Ox0EOQO,
NOSEC=1, NCOP=1,ROMON=0,EEON=1)
.11. The 68HC11 reprotects the CONFIG and EEPROM.
.12. The 68HC11 waits for a request for the
PASS/FAIL response.

10. Ptprog requests the PASS/FAIL status from 68HC11

.1. ptprog requests the 68HC11 to send
the response PASS/FAIL.

.2. 68HC11 checks its recieve buffer and
sends the response register data.

.3. ptprog checks the response data,
0x00 = PASS, 0XFF = FAIL.

Note: ptprog will time out if 6BHC11 does
not send the response data.

4. 68HC11 goes into monitor mode - waiting
to receive address locations from
ptprog if ptprog enters the monitor function.

11. ptprog cleanup:

.2. sends PASS/FAIL to 18xx

.3. checks for monitorFlag

4. enters monitor mode if monitorFlag true (only if
program is started from
DFP keyboard for debug)

.5. release DR's, close all files + ports

.6. exit(0)

18xx Worksheet/Argument usage:
1. Set up 18xx test to take in a 5-digit serial number
earlier in the 18xx program and store
in ALPHAO.

4-4 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

2. DigFuncProc worksheet example:
Source Dir:mod1
Arguments:%ALPHAO
Timeout:5

modl = subdirectory to find ptprog.exe
%ALPHAOQ = serial number to pass to ptprog.exe
5 = timeout in seconds for DigFuncProc worksheet

Sample pt2.ini-68HC11F1.:
L,IC1,68HC11F1,eeprom.obj,82,0,0,1

L = local device tag
IC1 = board identifier
68HC11F1= device type
eeprom.obj= data source file

82 = format of data source file
(82 = motorola s-record)
0 = memory size
(O=default to data file size)
0 = byte position
1 = fill character
Wiring :
signal: DFP card:DFP node/s:
Reset card 0 192 (Port A)
ModA card 0 193 (Port A)
ModB card 0 194 (Port A)
RxD card O 208 (Port C - DFP -TxD)
TD card 0 209 (Port C - DFP -RxD)
Statistics-68HC11F1:
18xx: O.S. Version - E.3
DFP: O.S. Version - A.3

AmiBios - ISA BUS CLOCK SELECTION = AUTO
AmiBios - DRAM = FAST
SmartDrv - Set (times taken after 1 initial
run to load smart drv memory)
Compiler:Turbo C - 3.0
sample of: 1
aprox. times for:
erasing and programming 10 bytes EEPROM in 68HC11F1.:

10 bytes1.20 sec

NOTE: All times have 200ms added for 18xx memory swapping.
NOTE: time may be reduced if:
1. You have assembler program

check for erased condition of eeprom rather

than automatically erase the eeprom address. This

programmer did not have time to pursue this, but

it would make sense if expecting to program

mainly new devices.

Digital Function Processor User’s Guide-5th Ed.

4-5

Custom Example—Serial Boot

2. You do not need to remap or reconfigure
the CONFIG reg. Refer to the REMAP section of
the eeprom.asm.

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <dos.h>
#include <errno.h>
#include <ctype.h>
#include "pt2.h"

#define MATCHO
#define NO_MATCH(-1)
#define NO_REPLY(-2)
#define MAX_WIDTHZ1// One device and datafile to

/I be identified via the pt2.ini file
#define BOOTSIZE1024//max size of boot data array
#define EE_DATASIZE10//size of eeprom data array

/[Define CCC+DR2P cards/control

/Inote: bus or channel direction is from the DFP's point of view
#define CDO /[dfp card number

#define CD_ADDRCARDO //dfp card address (refer pt2.h)

/ldefine dfp port a+b=rst_bus = device modb, moda, rst
#define RST_BUSCD_ADDR|PA_DATA//dfp port a = rst bus
#define RST_BUS_DIRCD_ADDR|PAB_CNTL//dfp port a+b direction

/ldefine dfp port ¢c = ser_bus = device/dfp rxda, txda

#define SER_BUSCD_ADDR|PC_DATA//dfp port c = ser_bus
#define SER_BUS_DIRCD_ADDR|PC_CNTL//dfp port c direction
#define SER_ADAT CD_ADDR|SIO_ADAT//dfp serial xmit or rec

static charnotice[]={"Digital Function Processor system"
" Copyright (C) 1993,1994 Teradyne Inc.\n"},
filename[MAX_WIDTH][13],
irec[|_REC_SIZ],//ini record buffer
msg[l_REC_SIZ],//message buffer
args[MAX_COM_SlIZ],//argument string
**parg; /Ipointer to arguments

static FILE*ini_file,//pointer to pt2.ini file

*failfile, //pointer to failfile
*datafile[MAX_WIDTH];//pointer to data file/s

4-6 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

static inthandle, /Ihandle for com port
bootcount, //bytecount for bootload file
monitorFlag;

static unsignedintfailval;//pass-fail value

static unsigned charbootdata[BOOTSIZE],//store bootload data
eedata[EE_DATASIZE],//store eeprom data
Xmitsum, /Ixmit checksum
recsum; /Ireceive checksum

/[function prototypes

static void open_com_port(void);

static void get_args (int argc, char **argv, char *args);
static void usage(void);

static void open_pt2ini(void);

static int read_ini_data(char *record);

static void open_data_file(void);

static void store_boot_data (void);

static int store_eeprom_data(void);

static void init_dfp_cards(void);

static void initS1O(int card);

static int do_bootload(void);

static char checksum(int port);

static int check_write(void);

static void monitor(void);

static void cleanup(void);

static void print_Message(char *msg);//print msg to BOTH DFP+18xx screens

/**/
int
main(int argc, char **argv)

{

clock_t clock_ticks;//structure to hold elapsed time
int error;//error variable

failval=0;//initialize failval = 0x0;

/**/

/* Open DFP COM port + set port parameters */

/**/

open_com_port();

/**/

/* Display copyright notice */

/**/

printf("%s\n",notice);

/**/

/* Create argument string */

/**/

Digital Function Processor User’s Guide-5th Ed.

4-7

Custom Example—Serial Boot

get_args (argc, argv, args);
printf("The argument string = '%s'.\n",args);

/**/

/* Open, read, close pt2.ini*/

/**/

open_pt2ini();

/**/

/* Open bootloader data file */

/**/

open_data_file();

/**/

/* Store Boot loader data */

/**/

store_boot_data ();

/**/

/* Store EEPROM data */

/**/

error = store_eeprom_data();
if (error)
failval = 1;

/**/

/* Initialize Channel Control Cards + DR2P Cards */

/**/

if ((failval)
init_dfp_cards();

/**/

/* Write boot-loader program to processor */

/**/

if ((failval)

error = do_bootload();
if (error)

failval = 1;

/**/

/* Query DUT for successful EEPROM WRITE

/**/

if ((failval)
error=check_write();
if (error)
failval = 1;

4-8

*/

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

/**/

/* Cleanup: */

/* send 18xx PASS/FAIL */

/* enter monitor mode if flag is set */

* cleanup() function: release (CLR) DR2p's */
* close com handle */

[* close any open files */

/**/

~

if (failval)
{
printf("FAILED!\n");
keep_alive(handle,FAIL);
}

else
{
printf("PASSED!\n");
keep_alive(handle,PASS);
}

#ifdef TURBO

clock _ticks = clock();

printf("Elapsed time = %f seconds.\n",clock_ticks / CLK_TCK);
#endif

if (monitorFlag)

{

monitor();

}

cleanup();// release DFP control, close files

return(0);
} /lend main

[RFFFK KK KKK *kkkkk *% *kkkkk *% *kkkkk *% x/

I* PROGRAM FUNCTIONS */

[RFFFK KK KKK *kkkkk *% *kkkkk *% *kkkkk *% x/

[[++++++++++ open_com_port function ++++++++++

/[Function: Open the DFP computor com port and set paremters.
/IPre: No preconditions

/IPost: DPF computer com port open.

1 port parameters: 57600 baud

1 no parity

I 8 bits

1 1 stop bit
[[++++++++++++++
void

open_com_port (void)

{

/lopen com port
if (handle = open("com1",(int)(O_BINARY+O_RDWR))) == -1)

Digital Function Processor User’s Guide-5th Ed. 4-9

Custom Example—Serial Boot

{
printf("Error opening COM port\n™);//not send to 18xx

/Iport not open!
exit(PTPROG_PRT_ERROR);

}

/Iset up parameters for com port
if (Iserial_set(handle,BAUD57600,PARITY_NONE,LENGTH_8,STOPBIT_1,
PROT_NONE,0,0))
{
printf("Error setting port parameters\n®);//not send to 18xx
/Iport parameters not ok!
close(handle);
exit(PTPROG_PARAM_ERRORY);
}

return;

}

[[++++++++++ get_args function ++++++++++
/[Function: Get the optional argument string for ptprog.c.
1

/I This functions seperates the "starting switch”

/I statements for how the program was started from the
/I optional arguments for the program.

1

/I Two possibilites for starting ptprog are

1 1. slave.

I 2. DFP keyboard.

1

/I Slave ALWAYS inserts -s into the argument string to
/I alert ptprog that slave initiated the program -- and

/I therefore the REST OF THE ARGUMENTS are passed
/I following the -s (seperated by space/s).

1

/I For debug when you are starting ptprog from the

/I DFP keyboard, you may want to sometimes have the
/I arguments come from the keyboard, or sometimes

/I from the port (18xx testsheet).

1

/I The possible "start switch" combinations:

I 1. ptprog started by slave:

I ptprog -s (args from slave)

I 2. ptprog started from DFP keyboard:

I ptprog -s (args from keyboard --emulating slave)
I ptprog -k (agrs from keyboard)

I ptprog -km(args keyboard)

I ptprog -p (args from port --18xx testsheet)

I ptprog -pm(args from port --18xx testsheet)

/I (switch meanings: s=slave, k=keyboard, p=port, m=monitor)
/I Examples with arguments:

I 1. start by slave
I ptprog -s [argl] [arg2]

4-10 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

1
1
1
1
1
1
1
1
1
1
1
1
1
/
1
1

=~

1

2. start from DFP keyboard - type:
ptprog -s [argl] [arg2] <enter>
ptprog -k [argl] [arg2] <enter>
ptprog -km [arlg] [arg2] <enter>
ptprog -p <enter>
18xx testsheet <press start>
[argl] [arg2]
ptprog -pm <enter>
18xx testsheet <press start>
[argl] [arg2]

This function will fill the variable args[] with only
the arguments following the switches for where the program
was started: the -s, -k, -km, -p, -pm are NOT saved.
Furthermore, the 'P' command and subdirectory name are NOT
saved from the port string (18xx string).
Example: ptprog -km hello world
-> args = "hello world"
Example: ptprog -k
->args=""
Example: ptprog -p
18xx sends string: Pmod1 hello world\n
-> args = "hello world"

(the null string)

/IPre: Ptprog is started from the command line or via Slave.

1
1
1

Optional arguments are sent from the command line or via
the com port.

/IPost: Fills the variable args[] with the argument string.

1

Updates global variable monitorFlag.

[l +++++++++++++H+H
void
get_args (int argc, char **argv, char *args)

{

char *arg_ptr;

int idx;

/linitialize to default condition

monitorFlag = 0;

if (argc < 2 || argv[1][0] !="-")

usage();

switch (argv[1][1])

{

case 'k': if (argv[1][2] =='m")
monitorFlag = 1,
case 's'": *args = 0x0;
for (idx=2; idx<argc; idx++)
{iif (idx 1= 2)
strcat(args," ");
strcat(args,argv[idx]);
}
break;
case 'p": if (argv[1][2] =='mM")

Digital Function Processor User’s Guide-5th Ed.

Custom Example—Serial Boot

monitorFlag = 1,
puts("\nWaiting for arguments from 18XX.");
puts("Press ESC to exit.\n");
if(read_port(handle,args,0))
exit(0);
/IRemove charactors up to the first space
arg_ptr = strstr(args,” ");
if (arg_ptr == NULL)
*args = 0x0;
else
strcpy(args,arg_ptr + 1);
break;
default: usage();

}

return;

}

[[+++++++++++ usage function +++++++++++++++++
/[Function: Display the switch statements allowed
/I for how to start this program from
/I the command line.
/IPre:Ptprog.exe is started from the command line
/I or by Slave.
/IPost: Displays the usage argument switches for starting
/I ptprog.exe.
/] +++++++++++++++++H
void
usage(void)
{
printf("\n%s%s%s%s%s%s%s%Ss%Ss%Ss%s",
"USAGE: ptprog <switch> [arguments]\n",
" switch\n",
" -S Emulate input from Slave via DFP keyboard,\n",
" no Monitor option.\n",
" -k[m] Arguments taken from DFP command line,\n",
" optional Monitor.\n",
" -p[m] Wait for arguments from port (18xx Worksheet),\n",
" optional Monitor.\n",

" -h Help\n",
" -? Help\n",
" Note: Switch must be lower case!!\n");

exit(0);

[[++++++++++ open_pt2ini.ini function ++++++++++
/[Function: Opens, reads, closes the pt2.ini file.

I Calls the read_ini_data function to extract

I specific information from record/s.
/[Pre:none

/IPost: If pt2.ini file not exist-> program exits.

/I Otherwise:

/I 1. fills the local variable irec with the ini.

/I 2. Stores specific info from record/s via the

4-12 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

I read_ini_data function.
[[++++++++++++++++
void

open_pt2ini(void)

{

int error=0;

/lopen pt2.ini file
if ((ini_file = fopen("pt2.ini","rt")) == NULL)
{ sprintf(msg,"Error opening pt2.ini\n");
print_Message(msg);
cleanup();
exit(INl_ERROR);
}

/I Read all the lines in the pt2.ini file
while(fgets(irec, |_REC_SIZ - 1, ini_file) '= NULL)
{if ((error = read_ini_data(irec)) != 0)
{if (error == WIDTH_ERROR)
sprintf(msg,"Error reading pt2.ini--WIDTH_ERROR");
else
sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(error);
}
}

/lcheck really at end of file and not file reading error
if('feof(ini_file))
{ sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(INIl_ERROR);
}

fclose(ini_file);
return;

}

[[++++++++++ read_ini_data function ++++++++++++++
/IFunction: A. Looks for 'L' tag record. The L tag

/I record had device specific information.

/I For this program the function gets the

/I device type, and data filename. The data

/I filename is processed to drop any name

/I extensions and adds the .img extension.

1

/IPre:Recieves a record from the pt2.ini file.

1

/[Post: If the record is an L record:

I 1. variable device_type = device type

I 2. variable last_address = number of bytes to program
I 4. variable filename[][] = datafile/s with .img extension

Digital Function Processor User’s Guide-5th Ed.

4-13

Custom Example—Serial Boot

1

[/++++++++++++++++
int
read_ini_data(char *record)

{

}

1
1

charimgfile[13],
bytepos|[2],
code[l_REC_SIZ],
device_type[30],
*ptr;

intpos,
error = 0;

/I Process L type entries

if (toupper(record[0]) =="'L")

{
/I Get device type and byte position
get_field(3,device_type,record);
printf("Device programming = %s\n",device_type);
get_field(7,bytepos,record);
pos=atoi(bytepos);

/I Get image filename(s)
get_field(4,imdfile,record);
ptr = strstr(imgfile,".");

if (ptr 1= NULL)

*ptr = Ox0;
strcat(imgfile,".img");
printf("infile = %s\n",imgfile);
if (pos >= MAX_WIDTH)

error=WIDTH_ERROR,;
strepy(filename[pos],imgdfile);

}

return(error);

++++++++++ open data files function ++++++++++
Function: Opens the .img data file/s containing

I the data for programing
1 device/s.

I The file/s are pointed to by
I a datafile pointer array.
I This application only uses

I one datafile pointer.
/[Pre:none

/IPost: If file/s not exist-> program exits.
/I Otherwise:

/I 1. datafile pointers -> to file/s
void

open_data_file(void)

{

4-

datafile[0] = fopen(filename[0],"r+b");
if (datafile[0] == 0)

14

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

{
sprintf(msg,"Error opening %s\n" filename[0]);
print_Message(msg);
cleanup();
exit(FOPEN_ERROR);
}
}

[[++++++++++ store_boot_data function ++++++++++
/IFunction: Stores the bootloader data

I in the bootdata[] array.
I Keeps track of the count for
1 the bootcount variable.

1 The data file is then closed.
I If there is a problem reading the
I file, the program exits.
1
/IPre:boot data file has been opened.
/IPost: bootarray[] = boot loader data
/I bootcount = number of bytes in bootarray][]
/I boot data file is closed.
void
store_boot_data (void)
{

longn;

intdata;

rewind(datafile[0]);

for (n=0; n<BOOTSIZE; n++) //initialize boot data array to all 0's
bootdata[n]=0;

n=0;
while ((data = fgetc(datafile[0])) '= EOF)
{
bootdata[n]=(unsigned char)data;
n++;
}
bootcount = n;
if (feof(datafile[O]))
{
sprintf(msg,"Error reading data file\n");
print_Message(msg);
cleanup();
exit(FREAD_ERROR);
}

fclose(datafile[0]);
return;

}

[[++++++++++ store_eeprom_data function ++++++++++
/[Function: Store the 'write' data to the

Digital Function Processor User’s Guide-5th Ed.

4-15

Custom Example—Serial Boot

I writedat[] array.
I 1. load 5 byte serial number
1 3. load the date and time

1
/IPre:The program arguments are pointed to by parg][].
/I (this program only expects one argument-> the serial number)
/IPost: The eedata[] array is loaded.
[[+++++++++++++H++H
int
store_eeprom_data(void)
{

longn;

int len=0;

struct dosdate_t ddate;

struct dostime_t dtime;

/I The following information will be entered into the EEPROM:
/I OXOEO0-OEO4Serial Number (5 bytes)

/I OXxOEO5 Year

/I OXOEO6 Month

/I OxOEO7 Day

/I OXOEO08 Hour

/I OXOEO9 Minute

1

printf("Storing eeprom data\n");
/lbreak up arguments into individual strings (pt2 libraray function)
parg=breakUp(args);

/l'initialize eedata string

for (n=0;n<EE_DATASIZE;n++)
{
eedata[n] = 0x00;
}

/I ** get the serial number **

/lif serial number is not 5 digits -> fail

len=strlen(parg[0]);

if (len 1= 5)

{
sprintf(msg,"ERROR -> serial number must be 5 digits long \n");
print_Message(msg);
return(ERROR);

}

/lwrite serial number to writedat array
/I and check for alpha-numeric input
for (n=0; n<5; n++)
{
if (isalnum(parg[0][n]))
eedata[n]=(unsigned char) parg[0][n];
else

{

4-16 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

sprintf(msg,"ERROR -> serial number must be a letter or a number\n™);
print_Message(msg);
return(ERROR);
}
}

_dos_gettime(&dtime); //get current time
_dos_getdate(&ddate);//get current date

eedata[n]=(unsigned char) ddate.day;
n++;
eedata[n]=(unsigned char) ddate.month;
n++;
eedata[n]=(unsigned char) (ddate.year-1900);
n++;
eedata[n]=(unsigned char) (dtime.hour);
n++;

eedata[n]=(unsigned char) (dtime.minute);

printf"EEPROM data = ");

for (n=0;n< EE_DATASIZE;n++)
printf("%2.2x ",eedata[n]);

printf(*\n");

return(NOERROR);
}

[[++++++++++ init_dfp_cards function ++++++++++++++
/[Function: Initialize DFP CCC cards and
I DR2P cards for the DFP program.
1
/IPre:The appropriate CCC/DR2P cards are installed
/I in the DFP and 18xx.
/[Post: The CCC + DR2P cards are initialized for
/I serial mode to program the 68HC11 via the
/I device pins: Reset, ModA, ModB, RxD, and Txd.
1
1
[[++++++++++++H++H
void
init_dfp_cards(void)
{
pt2init();//pt2 init
initCard(CD);//init dfp card
releaseDR(CD);//clear all relays
setMode(CD,SERIAL);//DFP serial mode
ptEnable(CD,ON);//Enable DFP

outpw(RST_BUS_DIR,0xFF00);//DFP Port A static output --
//bit 0 = 68hcll Reset
//bit 1 = 68hc11l ModA
//bit 2 = 68hc11 ModB

outp(SER_BUS_DIR,0x01); //DFP Port C --

Digital Function Processor User’s Guide-5th Ed.

Custom Example—Serial Boot

//bit 0 = out = DFP TxD -> 68hcl1l RxD
/lbit 1 =in = DFP RxD -> 68hcl11 TxD

outp(SER_BUS,0x00);//DR2P - enable DFP serial output (TxD) via U73

initSIO(CD); //init serial parameters.
delay(0); // Calibrate delay

/I Set relays

outpw(CD_ADDR|GA_INST,D_REED|nodA[0]|SET); //68hcll Reset
outpw(CD_ADDR|GA_INST,D_REED|nodA[1]|SET); //68hc11l ModA
outpw(CD_ADDR|GA_INST,D_REED|nodA[2]|SET); //68hcl1l ModB
outpw(CD_ADDR|GA_INST,D_REED|nodA[16]|SET); //68hc11 RxD (CCC- TxD)
outpw(CD_ADDR|GA_INST,D_REED|nodA[17]|SET); //68hc11l TxD (CCC- RxD)
delay(50);//allow relays to close

return;

}

[/++++++++++ InitSIO function ++++++++++++++

/[Function: Initialize serial /O communications

I via the DFP (CCC cards) 85C30

/I See pg. 8.5 of the Z8530 manual, table 8-2, polled asynchronous

// Baud rate based on 8MHZ - on the CCC card

/I Baud rate Examples:

/[9600 baud: (8MHZ/32 = (250000/9600baud) -2 = 26-2 = 24

/[11520 baud: (8MHZ/32 = (250000/11520baud) -2 = 21-2 =19

1

/IPre:Receives the CCC card number to initialize

/[Post: 85C30 is initialized for serial communications

1

[/++++++++++++++++

void initSIO(int card)

{
/["SCC Port A"
inp(card|SIO_ACOM); /Ireset SCC chip's internal ptrs to WRO
sioComWr(card,SIO_ACOM, 9, 0xc0); // force reset
sioComWr(card,SIO_ACOM, 4, 0x44); I/ 16* clk, 1 stop bit no parity
sioComWr(card,SIO_ACOM, 3, 0xc0); // Rx 8bits, Rx disable for now
sioComWr(card,SIO_ACOM, 5, 0x60); // Tx 8bits, Tx disable for now
sioComWr(card,SIO_ACOM, 9, 0x03); // interrupts disabled
sioComWr(card,SIO_ACOM,10, 0x00); // Misc unused SDLC functions
sioComWr(card,SIO_ACOM,11, 0x56); // Tx&Rx =BRGout, TRXC=BRGout
sioComWr(card,SIO_ACOM,12, 30); // *DECIMAL* 19 is for 11520 baud
sioComWr(card,SIO_ACOM,13, 0x00); // upper byte of const = 0.
sioComWr(card,SIO_ACOM,14, 0x06); // BRGin = pclk, BRG off
sioComWr(card,SIO_ACOM,14, 0x07); // BRG enabled
sioComWr(card,SIO_ACOM, 3, 0xcl); // RX enabled
sioComWr(card,SIO_ACOM, 5, 0xe8); // TX enabled
/["SCC Port B"
inp(card|SIO_BCOM); /lreset SCC chip's internal ptrs to WRO
sioComWr(card,SIO_BCOM, 4, 0x44); // 16* clk, 1 stop bit no parity
sioComWr(card,SIO_BCOM, 3, 0xc0); // Rx 8bits, Rx disable for now
sioComWr(card,SIO_BCOM, 5, 0x60); // Tx 8bits, Tx disable for now

4-18 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

sioComWr(card,SIO_BCOM,10, 0x00); // Misc unused SDLC functions
sioComWr(card,SIO_BCOM,11, 0x56); // Tx&Rx =BRGout, TRXC=BRGout
sioComWr(card,SIO_ACOM,12, 30); // *DECIMAL* 19 is for 11520 baud
sioComWr(card,SIO_BCOM,13, 0x00); // upper byte of const = 0.
sioComWr(card,SIO_BCOM,14, 0x06); // BRGin = pclk, BRG off
sioComWr(card,SIO_BCOM,14, 0x07); // BRG enabled
sioComWr(card,SIO_BCOM, 3, 0xcl); // RX enabled
sioComWr(card,SIO_BCOM, 5, 0xe8); // TX enabled

}

[[+++++++++++ do_boot_load function +++++++++++++++++
/[Function: Loads the boot data and eeprom write

1 data into the 6811.
1 The boot load is checked via the
1 checksum function.

/IPre:boot data and eeprom data have been
/I stored in eearray][].
/[Post: return error:
1 0 = no error
1l
/] ++++++++++++++++++H
int
do_bootload(void)
{
longn;
int tries;
int error = 0;

printf("Boot-loading 68HC11\n");

for (tries = 1 ; tries <4 ; tries++)

{

xmitsum = 0;//initialize xmitsum (checksum) variable

/[activate control bits

outp(RST_BUS, 0x07); //reset=1 moda=1 modb=1
outp(RST_BUS, 0x01); //reset=1 moda=0 modb=0
delay(1);

/l reset the board CPU while moda=modb=low --> serial boot mode
outp(RST_BUS, 0x00); //reset=0 moda=0 modb=0

delay(1);

outp(RST_BUS, 0x01); //reset=1 moda=0 modb=0

delay(2);

sioWr(SER_ADAT,0xff); //allow DUT CPU to discern our baud rate
delay(2);

for (n=0; n<bootcount; n++)
{
sioWr(SER_ADAT ,bootdata[n]);//transmit byte
Xmitsum = xmitsum + bootdata[n];//add to checksum
delay(2);
}

Digital Function Processor User’s Guide-5th Ed. 4-19

Custom Example—Serial Boot

for (n=0 ; n < EE_DATASIZE; n++)//send the command tail (bar code)
{
sioWr(SER_ADAT ,eedata[n]);//transmit byte
xmitsum = xmitsum + eedata[n];//add to checksum
delay(2);
}

/lcompare checksums
error=checksum(SER_ADAT);

if (error == 0) break; //0 = match, no need to retry
} I/ end of for (tries...

if (error==NO_REPLY)

{
sprintf(msg,"Failed bootload->no checksum received from 68HC11\n");
print_Message(msg);

}

if (error==NO_MATCH)

{
sprintf(msg,"Failed bootload->checksums not match\n");
print_Message(msg);
sprintf(msg,” Transmitted checksum = %x\n",xmitsum);
print_Message(msg);
sprintf(msg,” Received checksum = %x\n", recsum);
print_Message(msg);

}

return error;

}

[/+++++++++++ checksum function +++++++++++++++++
/[Function: compare our checksum with DUT's checksum:
/I' 1. wait 5 ms to allow 6811 to begin boot loader

I program and calculate checksum

/[2. clear our receiver

/I 2. send our port (card) address

/I 3. listen for DUT's checksum or time out

/I 4. compare checksums

/IPre:boot loader program loaded into DUT

/[Post: return:-MATCH = match

I NO_MATCH = checksum bad

I NO_REPLY = no reply (timed out)

/] +++++++++++++++++H
char

checksum(int port)

{

unsigned int n; // misc counter

delay(5);//give 6811 a time to calculate its checksum
while (sioRdrf(port)) sioRd(port); // discard garbage

sioWr(port,xmitsum); // request checksum and await reply

4-20 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

delay(2);

for (n=0; ((n<40000) && (!'sioRdrf(port))) ; n++);
if (!sioRdrf(port))
{

return NO_REPLY:; // no reply

}

else // got a reply - was it good or bad?
{
recsum = sioRd(port);
if (recsum == xmitsum)
return MATCH; //perfect match
else

return NO_MATCH; // got a reply, but not what we expected.

}
}

[[++++++++++ check_write function ++++++++++++++
/[Function: Requests the 68HC11 PASS/FAIL response.
1

/IPre:The 68HC11 successfully booted.

/[Post: returns error variable:

1 FAIL = OxFF
1 PASS = 0x00
1 NO RESPONSE = -1

1

[[+++++++++++++ b

int
check_write(void)
{

longn;

int error = -1;

printf("Requesting pass/fail response from DUT\n");

/I Empty input buffer ->read buffer till ready flag goes false
while (sioRdrf(SER_ADAT))
SioRd(SER_ADAT);

/I request pass-fail
SioWr(SER_ADAT,0xFF);

/11000000 allows for apx 240-250 ms delay for programming
/leeprom with 6811 running with 8MHZ clock

//(10 erase = 100ms, + 10 writes = 100ms,

/I + reconfigure CONFIG = 10ms, + some insurance since using
/I a simple counting loop)

/Inote: this loop drops out as soon as the Rdrf flag goes true!
for (n=0; ((n<1000000) && (!'sioRdrf(SER_ADAT))) ; n++);

if (sioRdrf(SER_ADAT))
error = sioRd(SER_ADAT);//error = 0 = PASS
else

{

Digital Function Processor User’s Guide-5th Ed.

4-21

Custom Example—Serial Boot

sprintf(msg,"No Pass/Fail Response received from 68HC11\n");
print_Message(msg);

}

return error;

}

[/++++++++++ monitor function ++++++++++

/[Function: Allow user to view the contents of the 6811

/I memory via addressing. The user enters a 4 digit (hex)
/I address and the function sends the address to the

/I DUT. The DUT returns the address plus 16 bytes

/I of data, starting at the given address.

/I The first line of data is in hex, then

/I below each hex byte is the same byte in

/[ascii if it is between 0x19 and 0x7f.

1

/I NOTE: This is an extremely simple monitor.

/I Error tolerance is high, and error handling is therefore nil.
/I User cannot backspace if he errs in typing the address. -
/I Just hit return or the space bar, and try again. This

/I program will always transmit a well-formed address to the
/I DUT, and the DUT will always echo it for confirmation.

1

/I NOTE: the actual contents written to 68HC11 will

I be seen starting at address 0xFEQO, not OXEQQO,
I since the 68HC11 hasn't been rebooted yet,

I at which time the memory is remapped according
I to the reconfiguration in the eeprom.asm program.

1
/[Pre:The bootloader was successful
/I The user enters a 4 digit (hex) address.
/I The user enters X' or 'Q' to quit
/IPost: 1. Returns the address plus 16 bytes of data in hex
/I and then in ascii starting at the given address.
/I 2. Exits if the user entered X' or 'Q".
[[+++++++++++++H++H
void
monitor(void)
{
unsigned int t; // misc counting variable
unsigned int time; // misc counting variable
unsigned long adr; // the "address” part of the query to DUT
int count; // counts the bytes returned from DUT
char dutbyte[20]; // the actual bytes returned from the DUT
char rcvd[20]; // flags indicating reception.
char cmd[5]; // keyboard input string
char done = 0; // a loop control item
char *endptr;

while ('done)

{

/I clear read buffer by reading till ready flag goes false
while (sioRdrf(SER_ADAT))

4-22 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

{
SioRd(SER_ADAT);

}

/l'initialize the receive array
for (count = 0; count < 20 ; count++)
{

rcvd[count] = 0;

}

printf(\nDUT Monitor. Enter X to quit.\n");
printf("->");
scanf("%s",cmd);

/linput to upper case
for (count = 0; count < 4 ; count++)
cmd[count] = (char)toupper(cmd[count]);

cmd[4]=0; //make sure last bit always a null (end of string)

/I These are the exit criteria: x, X, g, or Q.
if ((cmd[0] == "X) || (cmd[0] == "Q’))
{

done = 1;

printf("\aExiting monitor\n®);

break;

}

/lconvert ascii string into unsigned long (hex = base 16)
adr = strtoul(cmd, &endptr, 16);

/l Send M to tell CPU this is a monitor command and
/I to insure synchronization of the address bytes.
SioOWr(SER_ADAT,'M");

delay(2);

/Ixmit starting address to DUT
SioWr(SER_ADAT,(char)((adr >> 8) & 0xff));//xmit MSB byte
delay(2);

SioWr(SER_ADAT,(char)(adr & 0xff));//xmit LSB byte
delay(2);

/I wait (but not forever) for a response from the DUT.
/I we are expecting 18 bytes- 2 address bytes, 16 data bytes
for (count = 0 ; count < 18 ; count++)
{
/I get one byte per pass thru this loop
/I Check rdrfdut, but give up if 30000 false rdrfs
time = 0;
while (sioRdrf(SER_ADAT) == 0 && time++ < 30000);
if (time <29998) // i.e. if we did not time out,
{
dutbyte[count] = sioRd(SER_ADAT);
rcvd[count] = 1;

Digital Function Processor User’s Guide-5th Ed. 4-23

Custom Example—Serial Boot

}

else

{
break;
}

}

if (count==0)
printf("No reply from DUT...\n");
else
{
printf(*\n");
[ffirst print the 2 bytes of returned address in hex
for (t = 0; ((revd[t] > 0) && (t<2)) ; t++)
printf("%2.2x ",(unsigned char)dutbyte[t]);

printf(":->"); //a bit of format

/Isecond print the 16 bytes of returned data in hex
for (t = 2 ; ((revd[t] > 0) && (t<18)) ; t++)
printf("%2.2x ",(unsigned char)dutbyte[t]);

/Ithird print the 16 bytes of data in ascii
printf("\n\t ");
for (t = 2 ; ((revd[t] > 0) && (t<18)) ; t++)
{
if ((dutbyte[t] > 0x19) && (dutbyte[t] <Ox7f))
printf(" %c ",dutbyte][t]);
else
printf("* . *); // if applicable
}
printf("\n");
}

} /lend while !'done

}

[[++++++++++ cleanup function ++++++++++++++
/[Function: Release the DR2P cards from
/I DFP control, close all files+ handles.
1
/IPre:Program is about to exit (return).
/IPost: DFP releases DR2P control, all
/I files + handles closed.
1
[[++++++++++++H++H
void
cleanup(void)
{
releaseDR(CD);// Disable PrompTest
close(handle);// Close com port handle
fcloseall();// Close any open files
return;

}

4-24 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File—68C11F1

[[++++++++++ print Message function ++++++++++++++
/[Function: print (send) failure/error message
1 to both DFP and 18xx screen
1
/IPre:Receives msg buffer with formatted string.
/IPost: Prints message to DFP screen.
/I Sends message to 18xx to printed to 18xx screen.
1
[[++++++++++++H++H
void
print_Message(char *msg)
{
printf("%s",msq); //print to DFP screen
send18xxMsg(handle,DFP_18XX_MSG,msg); //send to 18xx DigFuncProc
/lworksheet
return;

}

Digital Function Processor User’s Guide-5th Ed.

4-25

Custom Example—Serial Boot

Assembly Source Code—68HCI11F1

Below is the assembly source code that is booted into into the 68HC11F1 processor for internal
eeprom programming. You can modify this code to suit your processor.

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhhkkkhkhkkkkkkkkkkkkhhhhhhhhkkkkxxkx

-k *
* THIS PROGRAM DEVELOPED FOR 68HC11F1 EEPROM LOADING *
-k *

’
shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhkkkhkkkkkkkkkkkkkhhhhhkhhhkkkxkxxkx
’

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhkkkhkhkkkkkkkkkkkkhhhhhkhhhkkkkkxkx

¥ SPECIFIC EQUATES FOR PROGRAMING 10 BYTES OF DATA INTO EEPROM:
;*-> EEPROM BASE ADDRESS

;*-> STARTING ADDRESS TO PROGRAM EEPROM

*-> NUMBER OF BYTES TO PROGRAM (CONSECUTIVE)

%
’

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhkkkhkkkkkkkkkkkkkhhhhhkhhhkkkkxkxxkx

.EQU PROMORG , $FE00 ; BASE ADDRESS OF EEPROM
.EQU DATASTRT, $FE00 ; STARTING EEPROM ADDRESS TO PROGRAM
.EQU DATASIZE, 10 ; NUMBER OF (CONSECUTIVE) BYTES TO PROGRAM

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhhhhhkkkhkhkkkkkkkkkkkkhhhhhkhkhkkkkkxxkx
’

k3

;*10 MS DELAY LOOP EQUATE - FOR PROGRAMING EEPROM

k3

;*2 examples are:

* EQUATE: XTAL: E CLOCK:

* .EQU PGM10MS , 31450 ; 12.58MHZ /4 =3.145
* .EQU PGM10OMS , 20000 ; 8.00MHZ /4 =2.000

%
’

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhkkkhkhkkkkkkkkkkkhhhhhhhhhkkkkxxkx
’

%
’

.EQU PGM10MS , 20000 ; 10MS DELAY FOR XTAL = 8MHZ

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhhhkkkhkkkkkkkkkkkkkhhhhhhhhkkkxxxkx

-k *
* MEMORY MAP EQUATES *
-k *

’
shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhhhkkkhkhkkkkkkkkkkkkhhhhhkhhkkkkxkxxkx
’

.EQU PROGSTAR , $0000 ;START OF EXECUTABLE CODE
.EQU RAMSIZE , 1024 ;RAM SIZE OF PROCESSOR
.EQU EFFECRAM , RAMSIZE-DATASIZE ;SIZE OF USABLE RAM LESS EEPROM DATA

shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhhhkkkhkhkkkkkkkkkkkkhhhhhhhhkkkkxxkx
’

-k *
* GENERAL EQUATES *
-k *

’
shkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhkkkhkhkkkkkkkkkkkkhhhhhkhhhkkkkkxkx

k3

* BIT EQUATES

%
’

EQUBITO , $01
EQUBITL , $02

4-26 Digital Function Processor User’s Guide-5th Ed.

Assembly Source Code—68HCT1F1

.EQUBIT2 , $04
.EQUBIT3 , $08
.EQUBIT4 , $10
.EQUBITS , $20
.EQU BIT6 , $40
.EQUBIT7 , $80

.EQUREG , $1000 ;BASE ADDRESS FOR CONTROL REGISTERS

Jx- DESCRIPTION PROCESSOR RESET VALUE
.EQU PORTA , $00 ;PORT A DATA REGISTER b'UOOOOUUU

*- BO-B7 MAY BE DISCRETE I/O

*- PAO-PA2 MAY BE INPUT CAPTURE

Jx- PA4-PA7 MAY BE OUTPUT COMPARE

*- PA3 MAY BE INPUT CAPTURE OR OUTPUT COMPARE
*

.EQU DDRA , $01 ;RESERVED FOR DATA DIRECTION REGISTER PORT A

.EQU PORTG , $02 ;PORT G DATA REGISTER b'UO0OOOUUU
Jx- MODE 0 OR BOOT = NORMAL I/O PORT
Jx- MODE 1 = D7,D6....D0

.EQU DDRG , $03 ;RESERVED FOR DATA DIRECTION REGISTER PORT G

.EQU PORTB , $04 ;PORT B DATA REGISTER b'00000000
Jx- MODE 0 OR BOOT OUTPUT ONLY PORT
Jx- MODE 1 OR TEST A15,A14....A8
-k

.EQU PORTF , $05 ;PORT F DATA REGISTER MODE DEP.
Jx- MODE 0 OR BOOT = OUTPUT ONLY PORT
Jx- MODE 1 = A7,A6....A0
-k

.EQU PORTC , $06 ;PORT C DATA REGISTER MODE DEP.
Jx- MODE 0 OR BOOT = NORMAL I/O PORT
Jx- MODE 1 = D7,D6....D0

.EQU DDRC , $07 ;DATA DIRECTION REGISTER FOR PORT C b'00000000

.EQU PORTD , $08 ;PORT D DATA REGISTER MODE DEP.
*- B5-B0 I/O AS PER DDRD
Jx- B7 = STRB, B6 = STRA IF MODE 0
*- B7 =R/W, B6=AS IF MODE 1
*

.EQU DDRD , $09 ;DATA DIRECTION REGISTER PORT D b'00000000
Jx- B5 - BO ONLY

.EQU PORTE , $0A ;I/O PORT E (INPUT ONLY) b'UUUUUUUU
- SHARED BY SERIAL A/D

.EQU TCNT , $0E ;TIMER COUNTER REGISTER (16-BIT) $0000
.EQU TCNTH , $0E ;TIMER COUNTER REGISTER (MSB) b'00000000
.EQU TCNTL , $OF ;TIMER COUNTER REGISTER (LSB) b'00000000

Digital Function Processor User’s Guide-5th Ed. 4-27

Custom Example—Serial Boot

.EQU TOC2

.EQU TOC2H
.EQU TOC2L
.EQU TCTL1

. OM(X)

, $18 ;OUTPUT COMPARE 2 REGISTER (16-BIT) $FFFF
, $18 ;OUTPUT COMPARE 2 REGISTER (MSB) b'11111111
, $19 ;O0UTPUT COMPARE 2 REGISTER (LSB) b'11111111
, $20 ;TIMER CONTROL REGISTER 1 b'00000000

OL(X) ACTION TAKEN UPON SUCCESSFUL OUTPUT COMPARE

4-28

0 O DISCONNECT TIMER FROM OUTPUT PIN
0 1 TOGGLE OC(X) OUTPUT
1 0 CLEAR OC(X) OUTPUT
1 1 SETOC(X) OUTPUT
.EQU TMSK1 , $22 ;TIMER MASK REGISTER 1 b'00000000
.EQU TFLG1 , $23;TIMER INTERRUPT FLAG REGISTER b'00000000
.EQU OC2F ,BIT6 ; OC2 INTERRUPT FLAG
.EQU SPCR , $28 ;SPI CONTROL REGISTER p'000001UU
.EQU SPRO , BITO ;SPICLOCK PRESCALAR
.EQU SPR1 ,BIT1 ;SPICLOCK PRESCALAR
b'00 E/2
b'01 E/4
b'10 E/16
b'11l E/32
.EQU CPHA ,BIT2 ; CLOCK PHASE
.EQU CPOL ,BIT3 ;CLOCK POLARITY
.EQU MSTR , BIT4 ; MASTER/SLAVE SELECT (1 = MASTER)
.EQU DWOM , BIT5 ;PORT D WIRE-OR MODE
.EQU SPE | BIT6 ; SPIENABLE
.EQU SPIE ,BIT7 ; SPIINTERRUPT ENABLE
.EQU SCSR |, $2E ;SCI STATUS REGISTER b'11000000
.EQU SCDR , $2F ;SCI DATA REGISTER b'UvUUUUUU
READS OF THIS REGISTER ACCESS THE RECEIVE DATA
BUFFER
WRITES TO THIS REGISTER ACCESS THE TRANSMIT
DATA BUFFER
.EQU BPROT , $35 ;EEPROM BLOCK PROTECT REGISTER b'UUUUUUUU
.EQU BPRTO ,BITO ; PROTECT BLOCK $XE00-$XE1F (1=PROTECT)
.EQU BPRT1 ,BIT1 ; PROTECT BLOCK $XE20-$XE5F (1=PROTECT)
.EQUBPRT2 ,BIT2 ; PROTECT BLOCK $XE60-$XEDF (1=PROTECT)
.EQU BPRT3 ,BIT3 ; PROTECT BLOCK $XEEOQO-$XFFF (1=PROTECT)
.EQU PTCON ,BIT4 ;1=PROTECT CONFIGURATION REGISTER
.EQU PPROG , $3B ;EEPROM PROGRAMMING CONTROL b'00000000
.EQU EEPGM | BITO ; TURN ON EEPROM PROGRAMMING VOLTAGE

Digital Function Processor User’s Guide-5th Ed.

Assembly Source Code—68HCT1F1

U TR TR TR TR TR TR TR TR TR TR TR TR TR TR

%

;* EEPROM MAP POSITION - EEO THRU EE3 SPECIFY MOST SIGNIFICANT
;* ADDRESS BITS OF EEPROM LOCN. EEPROM IS LOCATED FROM $XEOQ0-$XFFF

%

%

%

%

b'0001
b'0010
b'0011
b'0100
b'0101
b'0110
b'0111
b'1000
b'1001
b'1010
b'1011
b'1100
b'1101
b'1110
b'1111

.EQU EELAT ,BIT1 ; ENABLE EEPROM TO BE PROGRAMMED OR ERASED
.EQU ERASE , BIT2 ; ERASE EEPROM ENABLE
.EQU ROW | BIT3 ; ERASE ROW/ENTIRE EEPROM
.EQUBYTE ,BIT4 ; ERASEBYTE
.EQU EVEN ,BIT6 ; PROGRAM EVEN ROWS (TEST)
.EQUODD ,BIT7 ; PROGRAM ODD ROWS (TEST)
.EQU HPRIO , $3C ;HIGHEST PRIORITY | INTERRUPT b'----0101
.EQU PSELO ,BITO ; CODE TO SELECT INTERRUPT SOURCE
.EQU PSEL1 ,BIT1 ;" " " " "
.EQU PSEL2 ,BIT2 ;" " " " "
.EQU PSEL3 ,BIT3 ;" " " " "
b'0000 TIMER OVERFLOW

PULSE ACCUMULATOR OVERFLOW
PULSE ACCUMULATOR INPUT EDGE
SPI SERIAL TRANSFER COMPLETE
SCI SERIAL TRANSFER COMPLETE
RESERVED (DEFAULT TO IRQ)

IRQ (EXTERNAL PIN OR PARALLEL 1/O)
REAL TIME INTERRUPT

TIMER INPUT CAPTURE 1

TIMER INPUT CAPTURE 2

TIMER INPUT CAPTURE 3

TIMER OUTPUT COMPARE 1

TIMER OUTPUT COMPARE 2

TIMER OUTPUT COMPARE 3

TIMER OUTPUT COMPARE 4

TIMER OUTPUT COMPARE 5

.EQU IRV |, BIT4 ;INTERNAL READ VISIBILITY
.EQU MDA ,BITS5 ; MODE SELECT A

.EQU SMOD , BIT6 ; SPECIAL MODE SELECT

.EQU RBOOT ,BIT7 ;READ BOOTSTRAP ROM

.EQU CONFIG , $3F ;COP, ROM, EEPROM ENABLES

b'UUUUUUUU

.EQU EEON | BITO ; 1=ENABLE EEPROM

.EQU ROMON , BIT1 ; 1=ENABLE ROM (NOT USED IN GMP6)

.EQU NOCOP ,BIT2 ; 0=ENABLE COP

.EQU NOSEC ,BIT3 ; 0=SECURITY MODE ENABLE (NOT USED IN GMP6)

.EQU EEO ,BIT4 ; EEPROM MAP POSITION
.EQUEE1 ,BITS ; EEPROM MAP POSITION
.EQUEE2 ,BIT6 ; EEPROM MAP POSITION
.EQUEE3 ,BIT7 ; EEPROM MAP POSITION
skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkkkkkkkkkkkkkkkkhkhhkkhhkkkkkkkkkx
*
MAIN FUNCTIONAL PROGRAM *

Digital Function Processor User’s Guide-5th Ed.

4-29

Custom Example—Serial Boot

% *
)

skkhkhkkkkkkkkkkkkkkkkkhkhhkhhhkkkkkkkkx
1

.ORG PROGSTAR
SEI ;DISABLE INTERRUPTS
LDS #303FF ;SET STACK POINTER TO TOP OF RAM
LDX #REG ;LOAD INDEX OFFSET

%

;* STAY IN SPECIAL BOOTSTRAP MODE, DISABLE BOOT ROM, MAKE CHECKSUM FOR DFP

%
)

LDAA #SMOD+PSEL2+PSELO

STAA HPRIO,X

BSET SPCR,X,DWOM ;PORTD = WIRE "OR" OUTPUTS

CLR TCTL1,X ;DISCONNECT TIMERS FROM OUTPUT PINS
CLR TMSK1,X ;DON'T ALLOW TIMER INTERRUPTS

CLR PPROG,X ;PUT EEPROM IN READ MODE

JSR CHECKSUM

%

;* ERASE BARCODE EEPROM BYTES

%
)

LDAA #PTCON ;PROTECT CONFIG, UNPROTECT EEPROM
STAA BPROT,X
LDY #DATASTRT ;LOAD BARCODE EEPROM START ADDR INTO Y
DOERASE LDAA #BYTE+ERASE+EELAT ;PUT EEPROM IN BYTE ERASE MODE
STAA PPROG,X
STAA 0 ;STORE ANY DATA TO EEPROM ADDR TO BE ERASED
LDAA #BYTE+ERASE+EELAT+EEPGM ;ENABLE EEPROM PROGRAMMING VOLTAGE
STAA PPROG,X
LDD #PGM1OMS ;DELAY FOR 10 MILLISECONDS

JSR DELAY
CLR PPROG,X ;EEPROM IN READ MODE, PROGRAM VOLTAGE OFF
INY ;JADVANCE TO NEXT BARCODE EEPROM ADDR

CPY #DATASTRT+DATASIZE
;HAS Y INCREMENTED PAST LAST BARCODE ADDR ?
BNE DOERASE ;IF NOT, CONTINUE ERASE, ELSE DROP THROUGH
-k
* MAIN EEPROM PROGRAMMING ALGORITHM BEGINS HERE
* NOTE: THIS ROUTINE PROGRAMS 16 BYTES OF DATA FROM RAM TO EEPROM

%
)

LDY #DATASTRT ;STORE START BARCODE EEPROM ADDR INY

LDX #TESEND ;LOAD ADDR OF FIRST RAM DATA IN X

PSHX ;PUSH ADDR OF FIRST RAM DATA ONTO STACK
EXECO0100 LDX #REG ;LOAD INDEX OFFSET

LDAA #EELAT ;SET EEPROM LATCH CONTROL

STAA PPROG,X

PULX ;RETRIEVE RAM ADDRESS FROM STACK
LDAB 0,X ;PUT DATA STORED IN RAM INTO ACCB
STAB 0,Y 'WRITE DATA TO EEPROM

PSHX ;PUSH RAM ADDR ONTO STACK

LDX #REG ;LOAD INDEX OFFSET

LDAA #EELAT+EEPGM ;ENABLE EEPROM PROGRAMMING VOLTAGE
STAA PPROG,X

PSHB ;PUSH RAM DATA ONTO STACK
LDD #PGM1OMS ;DELAY FOR 10 MILLISECONDS
JSR DELAY

4-30 Digital Function Processor User’s Guide-5th Ed.

Assembly Source Code—68HCT1F1

PULB ;RETRIEVE RAM DATA FROM STACK

CLR PPROG,X ;EEPROM IN READ MODE, PROGRAM VOLTAGE OFF
LDAA 0)Y ;READ EEPROM DATA INTO ACCA

CBA ;DATA COMPARE: RAM DATA TO EEPROM

BNE FAIL ;NO MATCH, BRANCH 'FAIL"

INY ;ELSE, POINT TO NEXT EEPROM LOCATION

CPY #DATASTRT+DATASIZE
;HAS Y INCREMENTED PAST LAST BARCODE ADDR ?

BEQ REMAP ;IF NOT, CONTINUE ERASE, ELSE BRANCH TO REMAP
PULX ;RETRIEVE RAM ADDR FROM STACK

INX ;POINT TO NEXT LOCATION IN RAM

PSHX ;PUSH INCREMENTED RAM ADDR ONTO STACK

JMP EXEC0100 ;AND DO NEXT BYTE
-k
;* FAIL: SET RESPONSE REG TO $FF
;* (NOTE: PASS= NO CHANGE TO RESPONSE REG= $00)
-k

FAIL COM RESPONSE ;COMPLEMENT RESPONSE TO BE $FF (FAIL CODE)

%

;* CHANGE CONFIG EEPROM REG TO ENABLE EEPROM AND REMAP IT TO $0E00
;¥ Actually this is the default conditition for the 68HC11A1. The
address for EEPROM can be remapped to any 4K boundries starting
at address $xEOQ0, where x = the 4 upper bits of the CONFIG
register. Default for the CONFIG register for 68HC11A1 = $0D,
which is what this example is using, and therefore the EEPROM
location is at $0E00. If your application calls for changing

the starting address for the EEPROM, then the code below will
reconfigure the starting address, as well as allow you to change

the NOSEC, NOCOP, ROMON, EEON bits in the CONFIG register.
If you are using the default parameter of $0D, and the devices

you will be programing never have had their CONFIG register
changed, you could go directly to DONE by changing the above
BEQ from BEQ REMAP to BEQ DONE.

TR TR TR TR TR TR TR TR TR TR TR TR

REMAP LDX #REG ;LOAD INDEX OFFSET
LDAA #BPRT3+BPRT2+BPRT1+BPRTO ;UNPROTECT CONFIG, PROTECT EEPROM
STAA BPROT,X
LDAA #ERASE+EELAT ;PUT EEPROM IN BULK ERASE MODE
STAA PPROG,X
STAA CONFIG,X S WRITE ANY DATA TO CONFIG ADDRESS
LDAA #ERASE+EELAT+EEPGM ;ENABLE EEPROM PROGRAM VLTG
STAA PPROG,X

LDD #PGMI10MS ;DELAY FOR 10 MILLISECONDS
JSR DELAY
LDAA #EELAT ;DISABLE ERASE MODE AND EEPROM PROGRAM VLTG

STAA PPROG,X

LDAA #NOSEC+NOCOP+EEON ;CONFIG DATA = $0D= factory default
;ENABLE EEPROM AT $0EOO=factory default

STAA CONFIG,X sWRITE DATA TO CONFIG REG

LDAA #EELAT+EEPGM ;ENABLE EEPROM PROGRAM VLTG

STAA PPROG,X

LDD #PGMI10MS ;DELAY FOR 10 MILLISECONDS

Digital Function Processor User’s Guide-5th Ed. 4-31

Custom Example—Serial Boot

JSR DELAY
CLR PPROG,X ;EEPROM IN READ MODE, PROGRAM VOLTAGE OFF

%

;* DONE PROGRAMMING SO LEAVE CONFIG AND EEPROM PROTECTED.

DONE LDAA #PTCON+BPRT3+BPRT2+BPRT1+BPRTO ;PROTECT CONFIG AND EEPROM
STAA BPROT,X

%

;* SEND THE RESPONSE (PASS/FAIL)

%
)

BRCLR SCSR,X,$20,* ;WAIT FOR RDRF TO SET (REQUEST RESPONSE)

LDAA SCDR,X ;GET RECEIVED DATA

LDAA RESPONSE ;LOAD ACCA WITH RESPONSE

BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY

STAA SCDR,X ;TRANSMIT RESPONSE FOR HNDSHK
-k
;* MONITOR: WAIT FOR ADDRESS FROM DFP - RETURN THE THE ADDRESS TO DFP.
;* THEN SEND DFP 16 BYTES DATA STARTING FROM THE ADDRESS.
* NOTE: EEPROM WILL APPEAR AT $FEO0 SINCE 68HC11 WAS BOOTED IN SPECIAL
;* BOOTSTRAP MODE. ALSO, UPPER FOUR BITS OF CONFIG REG ARE FORCED HIGH
;* IN THIS MODE, AND WILL READ AS AN $F if the CONFIG REG LOCATION
* IS CHECKED.
-k
EXEC0505 BRCLR SCSR,X,$20,* ;WAIT FOR RDRF TO SET

LDAA SCDR,X ;GET RECEIVED DATA (COMMAND)

CMPA #$4D ;COMPARE COMMAND TO AN "M"

BNE EXECO0505 ;IF NOT AN "M", CONTINUE TO WAIT

BRCLR SCSR,X,$20,* ;ELSE, WAIT FOR RDRF TO SET AGAIN

LDAA SCDR,X ;GET RECEIVED DATA (READ ADDRESS HIGH BYTE)

STAA READADDH ;STORE IN RESERVED RAM LOCATION

BRCLR SCSR,X,$20,* ;WAIT FOR RDRF TO SET AGAIN

LDAA SCDR,X ;GET RECEIVED DATA (READ ADDRESS LOW BYTE)

STAA READADDL ;STORE IN RESERVED RAM LOCATION

%

* XMT STARTING READBACK ADDR TO SERIAL PORT FOR HANDSHAKE

%
)

LDAA READADDH ;LOAD MSB OF READ ADDR TO ACCA
BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
STAA SCDR,X ;TRANSMIT BYTE

LDAA READADDL ;LOAD LSB OF READ ADDR TO ACCA

BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
STAA SCDR,X ;TRANSMIT BYTE

%

* READ 16 BYTES AND TRANSMIT OUT SERIAL PORT

%
)

LDY READADDH ;POINT TO BEGINNING ADDRESS TO READ
LDAB #16 ;LOAD NUMBER OF BYTES TO READ

EXECO0600 LDAA 0,Y ;READ ABYTE
BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
STAA SCDR,X ;TRANSMIT BYTE
DECB ;DECREMENT BYTE COUNT
BEQ EXECO0505 ;IF ZERO, RETURN TO SERIAL PORT MONITOR

4-32 Digital Function Processor User’s Guide-5th Ed.

Assembly Source Code—68HCT1F1

INY ;ELSE, POINT TO NEXT ADDRESS TO READ
BRA EXEC0600 ;CONTINUE READING

skkhkhkkkkkkkkkkkkkkkkkhkhhkhhhkkkkkkkx
1

-k *

;* CHECKSUM: ADD UP DATA BYTES OF PROGRAM STORED IN RAM, TRANSMIT TO DFP*

-k *
)

skkhkhkkkkkkkkkkkkkkkkhkhkhhkhhhhkkkkkkkx
1

.EQU CHECKSUM, *
LDY #TESEND+10 ;LOAD ADDRESS OF PROGRAM END + 16 DATAINTO Y

CLRA ;CLEAR ATO ZERO

ADDLOOP DEY ;DECREMENT Y TO POINT AT NEXT LOWER ADDRESS
BEQ LASTADDR ;IFY IS ZERO, BRANCH OUT OF LOOP
ADDA 0,Y ;ELSE ADD DATA FROM ADDRESS "Y" TO A

BRA ADDLOOP ;CONTINUE LOOP FOR ADDING UP DATA BYTES
LASTADDR ADDA 0,Y ;ADD IN BYTE AT ADDRESS 0000

BRCLR SCSR,X,$20,* ;WAIT FOR RDRF TO SET

LDAB SCDR,X ;GET RECEIVED DATA

BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY

STAA SCDR,X ;TRANSMIT CHECKSUM TO DFP

; LDAA #3011

; BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
; STAA SCDR,X ;TRANSMIT CHECKSUM TO DFP

; LDAA #3$02

; BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
; STAA SCDR,X ;TRANSMIT CHECKSUM TO DFP

; LDAA #$03

; BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
; STAA SCDR,X ;TRANSMIT CHECKSUM TO DFP

; LDAA #3$04

; BRCLR SCSR,X,$80,* ;WAIT FOR TRANSMIT DATA REG TO EMPTY
; STAA SCDR,X ;TRANSMIT CHECKSUM TO DFP

CBA ;DO CHECKSUMS MATCH
BEQ RETURN
JMP FAIL ;IF NOT, GO BACK AND WAIT FOR ANOTHER BYTE

RETURN RTS
skkhkhkkkkkkkkkkkkkkkkkhkhhkhhhkkkkkkkkx
-k *
;* DELAY: PROVIDES DELAY FOR THE COUNTS IN 'ACCD' *
-k *
:**

.EQU DELAY, *

ADDD TCNTH,X ;ADD FREE RUNNING TIMER PRESENT VALUE
STD TOC2H,X ;SAVE COMPARE TIME
LDAA #OC2F
STAA TFLG1,X ;CLEAR ANY SET OUTPUT COMPARE FLAG
BRCLR TFLG1,X,0C2F,* ;WAIT FOR OUTPUT COMPARE IN 10 MILLISECONDS
RTS
RESPONSE .DB 0 ;PASS/FAIL STATUS REGISTER; $00 IS PASS CODE
READADDH .DB O
READADDL .DB O

skkhkhkkkkkkkkkkkkkkkkkhkhkhkkhhhkkkkkkkkx
1

Digital Function Processor User’s Guide-5th Ed. 4-33

Custom Example—Serial Boot

% *

;* DEFINE PROGRAM END LOCATION WHERE DATA FOR EEPROM IS STORED IN RAM *

*

-k

1
skkhkhkkkkkkkkkkkkkkkkkhkhhkhhhkkkkkkkx
1

.EQU TESEND, *
.END

4-34 Digital Function Processor User’s Guide-5th Ed.

Custom Example —

Serial Flash in Free Air

Pt2.ini Example—25040
Ptprog.c Example—25040

The 18XX DigFuncProc testsheet sends the subdirectory path and
arguments (ALPHAO) to slave.exe on the DFP computer to start the
appropriate ptprog.exe. The ptprog.exe program writes an 8-digit
serial number (18XX ALPHAOQ) and the current date to the
EEPROM, filling the rest of the memory with OxFF. Ptprog.exe
then verifies the memory write and sends the 18XX DigFuncProc

testsheet a PASS/FAIL indication.

Ptprog.exe can also be started from the DFP keyboard.

Figure 5.1 Serial Flash In Free Air Interconnect Diagram

DFP

CCcCo

25040 Fixture DR2P 0
CS* node 208 PORT A
SO node 209
WP* node 210 PORTB
Sl node 211
SCK node 212 PORT C
HOLD* node 213 - Bits 0-5
PORT D

PT2.INI File

PT2.INI File

Below is the pt2.ini file used in this example.

L,IC1,25040,,,512,0,

PTPROG.C File

Below is the ptprog.c file used in this example.

/*
*** Serial EEPROM Example ***

Custom Application For programming 25040 serial eeprom
Filename : ptprog.c

Component/s: 25040

Aliases : X25040

Device Manufacturer: Xicor
Device Function: 25040:512 x 8 memory
IC Package: 8 Pin SMD
Written by: Barbara Ryan - Teradyne - ATWC
Date Created: 10-OCT-95
Original Source: 25040, 6-JULY-94
Fixture Requirements: see wiring below
Files Required: ptprog.exe (compiled ptprog.c)
pt2.ini (see below)
Written with OS: DFP - B.O
18XX - F.0

To use this program with earlier versions

(either DFP or 18xx)

comment out the 'send18xxMsg()’

function call in the
print_Message() function.
Test Description:

25040 eeprom Memory:4096 bit (512 x 8-Bit)
CMOS
5.0 Volt-write cycles

This application writes an 8-digit serial number,
the current date, and fills the rest of the
eeprom memory with OxFF.

The program will setup the writedat[] array
with the following data:
array position:
0-7 -->8digit (alpha-numeric) serial number

8 -->current day

9 -->current month
10 -->current year
11-512 --> Oxff

Digital Function Processor User’s Guide-5th Ed.

5-2

PTPROG.C File

The data is then written to the eeprom, each

array position corresponds to the
eeprom address location to write to.

After the data is written to the eeprom, the

same addresses are read and stored in

a the readdat[] array and compared to the
write array contents, byte by byte for
verification.

NOTE: This program was written for an application

with the pin HOLD* = WP* = pull up.

NOTE: The monitor routine is very simple and does

no real error checking. BE SURE to

use a valid address in the DUT address
range. The valid range is 000-1ff, therefore
the valid range to get 16 bytes of data

is 000-1f0. Typing 1ff, for instance,

causes the memory to simply roll over,

and you get byte 1ff and then bytes

0-14!

Program Organization Outline:

A WN P

©O© 00~NO O

. open com ports

. set up port parameters

. get the arguments

. open files:1. pt2.ini -> retrieve

device type
device size (last_address)

. set up CCC/DR2P cards

. get serial number and date - fill writedat[] array.
. program device

. verify device

. Cleanup:

write PASS/FAIL to 18xx (pcom.exe)

enter monitor mode if monitor flag true (only if
program started from DFP keyboard for
debug)

close all files and ports

release DR's

exit(0)

18xx Worksheet/Argument usage:

1.

2.

Set up 18xx test to take in an 8-digit serial number
earlier in the 18xx program and store
in ALPHAO.

DigFuncProc worksheet example:
Source Dir:mod1
Arguments:%ALPHAO
Timeout:5

Digital Function Processor User’s Guide-5th Ed.

5-3

PTPROG.C File

modl = subdirectory to find ptprog.exe
%ALPHAOQ = serial number to pass to ptprog.exe
5 = timeout in seconds for DigFuncProc worksheet

/Inote: no keep_alive()s are sent to 18xx to keep the 18xx from
/ltiming out since this program typically takes under
/I 2 sec apx. (refer to Statistics below)

Sample pt2.ini-25040:
L,IC1,25040,,,512,0,

where:L = local device tag
IC1 = board identifier
25040 = device type
= data file = not used in this program

= format type = not used in this program
512 = memory size
0 = byte position

= fill character = not used in this program

Wiring
signal: DFP card:DFP node/s:
Ccs* card 0 208 (Port C)
SO card 0 209 (PortC)
WpP* card 0 210 (PortC)*
Sl card 0 211 (PortC)
SCK card 0 212 (Port C)
HOLD* card 0 213 (PortC)*

* NOTE: this application HOLD* = WP* = pulled high

Statistics-25040:
18xx: O.S. Version - E.3/F.0
DFP: O.S. Version - A.3/B.0
AmiBios - ISA BUS CLOCK SELECTION = AUTO
AmiBios - DRAM = FAST
SmartDrv - Set (times taken after 1 initial
run to load smart drive memroy)
Compiler:Turbo C - 3.0
sample of: 1X25040 (Xicor)
aprox. times for programming a 25040:
using pagewr:
4K (512 x 8-bits) 0.8 sec

using bytewr:
4K (512 x 8-bits) 2.0 sec

(NOTE: Times have 200ms added for 18xx memory swapping)
*/

#include <stdio.h>

Digital Function Processor User’s Guide-5th Ed. 5-4

PTPROG.C File

#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <dos.h>
#include <errno.h>
#include <ctype.h>
#include "pt2.h"

/ldefine type of write method - page write or byte write
#define PAGE_WRITE1

#define BYTE_WRITE2

#define TYPEPAGE_WRITE

/ldefine CCC/DR2p card used

#define CDO /[DFP ->card number

#define CD_ADDRCARDO //DFP ->card addr (refer pt2.h)

#define DATA_BUSCD_ADDR|PC_DATA//DFP ->data bus - data
#define DATA_BUS_DIRCD_ADDR|PC_CNTL//DFP ->data bus direction

/ldefine device signals

#define CS_HOx01//CS* = high
#define CS_LOx00//CS* = low
#define SO_HOx02//SO = high

#define SO_LOx00//SO = low
#define WP_HOx04//WP* = high
#define WP_LOx00//WP* = low
#define SI_HOx08//SI = high
#define SI_LOx00//SI = low
#define SK_HOx10//SCK = high
#define SK_LOx00//SCK = low
#define HD_HOx20//HOLD* = high
#define HD_LOx00//HOLD* = low

static charnotice[]={"Digital Function Processor system"

" Copyright (C) 1993,1994 Teradyne Inc.\n"},
args[MAX_COM_SlIZ],//argument string
irec[|_REC_SIZ], //ini file record buffer
msg[l_REC_SIZ]; //message buffer

static FILE*ini_file,//pt2.ini file pointer
*failfile;//fail file pointer
static unsigned charreaddat[512],//store data read from eeprom
writedat[512]; //store data to write to eeprom
static inthandle, /lcom port handle
type, /Ipage write or byte write
monitorFlag;
static longlast_address;
static unsigned intfailval;//failure value

Digital Function Processor User’s Guide-5th Ed.

5-5

PTPROG.C File

/lgeneral program functions

static void open_com_port (void);

static void get_args (int argc, char **argv, char *args);
static void usage(void);

static void open_pt2ini(void);

static int store_data (void);//store serial #,date,time
static int read_ini_data(char *record);

static void init_dfp_cards(void);

static void monitor(void);

static void cleanup(void);

static void print_Message(char *msg);//print msg to DFP + 18xx screen

/[device functions

static void disable_chip (void);

static int program_memory (int type);
static int verify_memory (void);

static int bytewr (int addr, unsigned char wrdat); //write byte eeprom
static int pagewr (int addr);//write page eeprom

static void write_8_bits (int data);//write 8 bits (MSB to LSB)
static int read_8_bits();//read 8 bits (MSB to LSB)

static void si_low (void);//serial input (SI) low

static void si_high (void);//serial input (SI) high

static void wren (void);//write enable

static void wrdi (void);//write disable

static unsigned char rdsr (void);//read status reg

static void wrsr (void);//write status reg

static void rd (int start_addr, int end_addr);//read eeprom

/**/

int main(int argc, char *argv[])
{
int n,i;
clock_tclock_ticks;
failval=0;// initialize failure flag

/**/

/* Open DFP COM port + set port parameters */

/**/

open_com_port();
/**/

/* Display copyright notice */

/**/

printf("%s\n",notice);

/**/

/* Create argument string */

Digital Function Processor User’s Guide-5th Ed.

5-6

PTPROG.C File

/**/
get_args (argc, argv, args);
printf("The argument string = '%s'.\n",args);

/**/

/* Open, read, close pt2.ini*/

/**/

open_pt2ini();

/**/

/* Initialize Channel Control Cards + DR2P Cards

/**/

init_dfp_cards();
/**/

/* Initialize Device */

/**/

disable_chip();

/***/

/* store data - serial number, date */

/***/

if (store_data())

{ sprintf(msg,"Error - Serial # must be 8 digits or letters\n");

print_Message(msg);
failval=1;

}

/**/

/* Program eeprom */

/**/

if ((failval)
if (program_memory(TYPE))

{ sprintf(msg,"Error - eeprom failed to program\n");

print_Message(msg);
failval=1,;

}

//**/

/I* Verify eeprom */

//**/

if ((failval)
if (verify_memory())
{ sprintf(msg,"Error - eeprom failed to verify\n");
print_Message(msg);
failval=1;

}

Digital Function Processor User’s Guide-5th Ed.

*/

PTPROG.C File

/**/

/* Cleanup: */

/* send 18xx PASS/FAIL */

/* enter monitor mode if flag is set */

* cleanup() function: release (CLR) DR2p's */
* close com handle */

[* close any open files */

/**/

~

if (failval)

{ printf("FAILED!!\n");
keep_alive(handle,FAIL);

}

else

{ printf("PASSED!'\n");
keep_alive(handle,PASS);

}

clock _ticks = clock();
printf("Elapsed time = %f seconds.\n",clock_ticks / CLK_TCK);

if (monitorFlag)
monitor();

cleanup();//release DFP control, close files
return(0);
} /lend main

[RFFFK KK KKK *kkkkkkkhkk *kkkkk *% *kkkkk *% x/

/* Program Functions */

[RFFFK KK KKK *kkkkkkkhkk *kkkkk *% *kkkkk *% x/

[[++++++++++ open_com_port function ++++++++++

/[Function: Open the DFP computor com port and set paremters.
/IPre: No preconditions

/[Post: DPF computer com port open.

1 port parameters: 57600 baud

1 no parity

1 8 bits

1 1 stop bit
[[++++++++++++++
void

open_com_port (void)

{

/lopen com port
if (handle = open("com1",(int)(O_BINARY+O_RDWR))) == -1)
{
printf("Error opening COM port\n");//not send to 18xx,
/Iport not open!
exit(PTPROG_PRT_ERRORY);

}

Digital Function Processor User’s Guide-5th Ed. 5-8

PTPROG.C File

/Iset up parameters for com port
if (!serial_set(handle,BAUD57600,PARITY_NONE,LENGTH_8,STOPBIT_1,
PROT_NONE,0,0))
{
printf("Error setting port parameters\n™);//not send to 18xx,
/Iport parameters not ok!
close(handle);
exit(PTPROG_PARAM_ERRORY);
}

return;

}

[[++++++++++ get_args function ++++++++++
/[Function: Get the optional argument string for ptprog.c.
1

/I This functions seperates the "starting switch”

/I statements for how the program was started from the
/I optional arguments for the program.

1

/I Two possibilites for starting ptprog are

1 1. slave.

I 2. DFP keyboard.

1

/I Slave ALWAYS inserts -s into the argument string to
/I alert ptprog that slave initiated the program -- and

/I therefore the REST OF THE ARGUMENTS are passed
/I following the -s (seperated by space/s).

1

/I For debug when you are starting ptprog from the

/I DFP keyboard, you may want to sometimes have the
/I arguments come from the keyboard, or sometimes

/I from the port (18xx testsheet).

1

/I The possible "start switch" combinations:

I 1. ptprog started by slave:

I ptprog -s (args from slave)

I 2. ptprog started from DFP keyboard:

I ptprog -s (args from keyboard --emulating slave)
I ptprog -k (agrs from keyboard)

I ptprog -km(args keyboard)

I ptprog -p (args from port --18xx testsheet)

I ptprog -pm(args from port --18xx testsheet)

/I (switch meanings: s=slave, k=keyboard, p=port, m=monitor)

/I Examples with arguments:

I 1. start by slave

I ptprog -s [argl] [arg2]

I 2. start from DFP keyboard - type:

I ptprog -s [argl] [arg2] <enter>

I ptprog -k [argl] [arg2] <enter>

I ptprog -km [arlg] [arg2] <enter>

I ptprog -p <enter>

I 18xx testsheet <press start>

Digital Function Processor User’s Guide-5th Ed. 5-9

PTPROG.C File

I [argl] [arg2]

I ptprog -pm <enter>

I 18xx testsheet <press start>
I [argl] [arg2]

1

/I This function will fill the variable args[] with only

/I the arguments following the switches for where the program

| was started: the -s, -k, -km, -p, -pm are NOT saved.

/I Furthermore, the 'P' command and subdirectory name are NOT
/I saved from the port string (18xx string).

=~

I Example: ptprog -km hello world

I -> args = "hello world"

I Example: ptprog -k

I ->args =" (the null string)

I Example: ptprog -p

I 18xx sends string: Pmod1 hello world\n
I -> args = "hello world"

1
/IPre: Ptprog is started from the command line or via Slave.
I Optional arguments are sent from the command line or via
I the com port.
1
/IPost: Fills the variable args[] with the argument string.
/I Updates global variable monitorFlag.
/] +++++++++++++++H++H
void
get_args (int argc, char **argv, char *args)
{
char *arg_ptr;
int idx;

/linitialize to default condition
monitorFlag = 0;

if (argc < 2 || argv[1][O] !="-")
usage();
switch (argv[1][1])
{
case 'k': if (argv[1][2] =='m")
monitorFlag = 1,
case 's'": *args = 0x0;
for (idx=2; idx<argc; idx++)
{iif (idx 1= 2)
strcat(args," ");
strcat(args,argv[idx]);
}
break;
case 'p": if (argv[1][2] =='mM")
monitorFlag = 1,
puts("\nWaiting for arguments from 18XX.");
puts("Press ESC to exit.\n");
if(read_port(handle,args,0))
exit(0);
/IRemove charactors up to the first space

Digital Function Processor User’s Guide-5th Ed.

5-10

PTPROG.C File

arg_ptr = strstr(args,” ");
if (arg_ptr == NULL)
*args = 0x0;
else
strcpy(args,arg_ptr + 1);
break;
default: usage();

}

return;

}

[[+++++++++++ usage function +++++++++++++++++
/[Function: Display the switch statements allowed
/I for how to start this program from
/I the command line.
/IPre:Ptprog.exe is started from the command line
/I or by Slave.
/IPost: Displays the usage argument switches for starting
/I ptprog.exe.
/] +++++++++++++++++H
void
usage(void)
{
printf("\n%s%s%s%s%s%s%s%s%Ss%Ss%s",
"USAGE: ptprog <switch> [arguments]\n",
switch\n",
-S Emulate input from Slave via DFP keyboard,\n",
no Monitor option.\n",
" -k[m] Arguments taken from DFP command line,\n",
optional Monitor.\n",
-p[m] Wait for arguments from port (18xx Worksheet),\n",
optional Monitor.\n",

" -h Help\n",
" -? Help\n",
" Note: Switch must be lower case!!\n");

exit(0);

[[++++++++++ open_pt2ini function ++++++++++
/[Function: Opens, reads, closes the pt2.ini file.
I Calls the read_ini_data function to extract
I specific information from record/s.
/[Pre:none

/IPost: If pt2.ini file not exist-> program exits.

/I Otherwise:

/I 1. fills the local variable irec with the ini.

/I 2. Stores specific info from record/s via the

I read_ini_data function.
[[+++++++++++++++H
void

open_pt2ini(void)

{

int error=0;

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

/lopen pt2.ini file
if ((ini_file = fopen("pt2.ini","rt")) == NULL)
{ sprintf(msg,"Error opening pt2.ini\n");
print_Message(msg);
cleanup();
exit(INIl_ERROR);
}

/I Read all the lines in the pt2.ini file
while(fgets(irec, |_REC_SIZ - 1, ini_file) '= NULL)
{if ((error = read_ini_data(irec)) != 0)

{if (error == WIDTH_ERROR)

sprintf(msg,"Error reading pt2.ini--WIDTH_ERROR");

else
sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(error);
}
}

/Icheck really at end of file and not file reading error
if(!'feof(ini_file))
{

sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(INl_ERROR);
}

fclose(ini_file);
return;

}

[[++++++++++ read_ini_data function ++++++++++++++
/[Function: Looks for 'L' tag record. The L tag

/I record had device specific information.

/I For this program the function gets the

/I device type and memory size.

1

/IPre:Recieves a record from the pt2.ini file.

1

/[Post: If the record is an L record:

/1 1. variable device_type = device type

/1 2. variable last_address = memory size
1

[[+++++++++++++++H b

int
read_ini_data(char *record)

charbytepos[2],
mem_size[10],

Digital Function Processor User’s Guide-5th Ed.

5-12

PTPROG.C File

device_type[30],
*ptr;

/I Process L type entries
if (toupper(record[0]) =="'L")
{
/I Get device type, memory size and byte position
get_field(3,device_type,record);
printf("Device programming = %s\n",device_type);
get_field(6,mem_size,record);
last_address = atol(mem_size);
printf("Last Address = %IX Hex\n",last_address);
}

return O;

}

[[++++++++++ init_dfp_cards function ++++++++++++++
/[Function: Initialize DFP CCC cards and

I DR2P cards for the DFP program.

1

/IPre:The appropriate CCC/DR2P cards are installed
/I in the DFP and 18xx.

/[Post: The CCC + DR2P cards are initialized for

/I serial mode to program the 68HC11 via the

/I device pins: Reset, ModA, ModB, RxD, and Txd.
1

1

[[+++++++++++++ b

void

init_dfp_cards(void)

{
pt2init(); // DFP init
initCard(CD);// card 0 init
releaseDR(CD);// This will clear all relays
setMode(CD,DATA);// card 0 data mode
ptEnable(CD,ON);// enable DFP, card 0
outp(DATA_BUS_DIR,0xFD);//Port C pins- 1=output, O=input
delay(0); // Calibrate delay

/I Set relays
outpw(CD_ADDR|GA_INST,D_REED|nodA[16]|SET); // CS
outpw(CD_ADDR|GA_INST,D_REED|nodA[17]|SET); // SO
/loutpw(CD_ADDR|GA_INST,D_REED|nodA[18]|SET); /[WP
outpw(CD_ADDR|GA_INST,D_REED|nodA[19]|SET); // SI
outpw(CD_ADDR|GA_INST,D_REED|nodA[20]|SET); // SK
/loutpw(CD_ADDR|GA_INST,D_REED|nodA[21]|SET); // HOLD

/Inote WP=HOLD=pullup
return;

}

[[++++++++++ store_data function ++++++++++
/[Function: Store the ‘write' data to the
I writedat[] array.

Digital Function Processor User’s Guide-5th Ed.

5-13

PTPROG.C File

I 1. load the writedat[] array with FF's
I 2. load the serial number in positions
1 0-7

I 3. load the date in positions 8-10

1
/IPre:The program arguments are stored in args variable
/IPost: The writedat[] array is loaded.
[[+++++++++++++H++H
static int
store_data (void)
{

struct dosdate_t ddate;

int len=0;

inti;

char**parg; //array of pointers

/I ** break up the argument string into individual strings **
parg=breakUp(args); //refer to pt2.h breakUp

/I ** init the writedat array **
for (i=0; i<last_address; i++)
writedat[i]=(unsigned char) OxFF;

/I ** get the serial number **
/Iserial number not 8 digits?
len=strlen(parg[0]);
if (len 1= 8)

return(ERROR);

/lwrite serial number to writedat array
/I and check for alpha-numeric input
for (i=0; i<8; i++)
{
if (isalnum(parg[0][i]))
writedat[i]=(unsigned char) parg[O][i];
else
return(ERROR);

}

/I ** get the date **

_dos_getdate(&ddate);

printf("\ndate= %2.2x %2.2x %2.2x\n",
ddate.day,ddate.month,ddate.year-1900);

i=8;

writedat[i]=(unsigned char) ddate.day;

i++;

writedat[i]=(unsigned char) ddate.month;

i++;

writedat[i]=(unsigned char) (ddate.year-1900);

return(NOERROR);
}

[[++++++++++ program_memory function ++++++++++

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

/[Function: Program eeprom memory

I 1. unprotect all addresses-able to write to eeprom
I 2. do either a page write or

I byte write depending on the type

1 variable.

I 3. protect the eeprom from future writes

1
/IPre:The program arguments are pointed to by parg][].
/I (this program only expects one argument-> the serial number)
/IPost: The writedat[] array is loaded.
[[+++++++++++++H++H
int
program_memory (int type)
{ .
int n;
wrsr(); //lunprotect all addresses via status register

printf("programming eeprom\n™);

/lif page write
if (type == PAGE_WRITE)
{
for (n=0; n<last_address; n=n+4)
{
wren();
if (pagewr(n))
return ERROR ;
}
}

/lif byte write
if (type == BYTE_WRITE)
{
for (n=0; n<last_address; n++)
{
wren();
if (bytewr(n, writedat[n]))
return ERROR;
}
}

wrdi();//write disable

return NOERROR;
}

[[++++++++++ verify_memory function ++++++++++
/IFunction: verify programming of eeprom.

/I 1. read eeprom contents and store into readdat[] array
/I 2. compare readdat[] array with writdat[] array

1

/[Pre:None

/[Post: Returns:

1 ERROR - data not match

Digital Function Processor User’s Guide-5th Ed. 5-15

PTPROG.C File

I NOERROR - data match
[[+++++++++++++H++H
int

verify_memory (void)

{

inti;

printf("verifing eeprom\n™);
/Iread entire eeprom and store into readdat[] array
rd(0,last_address);

/lcompare readdate[] array and writedat[] array contents
for (i=0; i<last_address; i++)
{
if (readdat[i]!=writedat[i])
{
printf("\nAddr error = %x, wdata = %X, rdat = %x\n",
i,writedat[i],readdat[i]);
return ERROR;
}
}

return NOERROR;
}

[[++++++++++ write enable function ++++++++++
/IFunction: Writes the eeprom enable instruction.

1

/[Pre:None

/IPost: programing eeprom is enabled
[[+++++++++++++++H
void

wren (void)

{

inti;

/linstruction format=0000 0110
for(i=0; i<5; i++)
si_low();
si_high();
si_high();
si_low();

disable_chip();
}

[[++++++++++ write disable function ++++++++++
/[Function: Writes the eeprom disable instruction.

1

/[Pre:None

/IPost: programing eeprom is disabled
[[+++++++++++++++H
void

wrdi (void)

Digital Function Processor User’s Guide-5th Ed.

5-16

PTPROG.C File

inti;

/linstruction format=0000 0100
for(i=0; i<5; i++)
si_low();
si_high();
si_low();
si_low();

disable_chip();
}

[[++++++++++ read status reg function ++++++++++
/[Function: Reads the eeprom status registar
1 and returns the status
1
/[Pre:None
/IPost: Returns: unsigned char- status
[[+++++++++++++++H
unsigned char
rdsr (void)
{
inti, datal,;
unsigned charstatus;

/linstruction format=0000 0101
for(i=0; i<5; i++)
si_low();
si_high();
si_low();
si_high();

/lIread and store status data
datal=read_8_ bits();
status= (unsigned char) datal;

disable_chip();
return status;

}

[[++++++++++ write status reg function ++++++++++
/IFunction: Writes to the eeprom status registar

I to unprotect all addresses.

1

/[Pre:None

/IPost: All eeprom addresses are unprotected.
[[+++++++++++++++H
void

wrsr (void)

{

inti;

/linstruction format=0000 0001

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

}

for(i=0; i<7; i++)
si_low();
si_high();

/IBP1=0, BPO=0 - no addresses protected
for (i=0; i<7; i++)
si_low();

disable_chip();

[/++++++++++ read function ++++++++++
/[Function: Reads data from the eeprom.

/I The function recieves the

/I starting and ending address to

/I read, and fills the readdat[] array.

1

/IPre:Receives the starting and ending addresses.
/IPost: The data is written to the readdat[] array.
[[+++++++++++++++H
void

rd (int start_addr, int end_addr)

{

}

inti;
unsigned int datal;

/linstruction format=0000 A011
for(i=0; i<4; i++)
si_low();
if(start_addr > 255)//is A8=1 or =07?
si_high();
else
si_low();
si_low();
si_high();
si_high();

write_8_bits(start_addr);//write address to start read from

/lIread and store eeprom data from starting address to ending address

for (i=start_addr; i<end_addr; i++)

{
datal=read_8_ bits();

readdat[i]= (unsigned char) (datal & OxFF); //cast as unsigned char

}

disable_chip();

[[++++++++++ byte write function ++++++++++
/[Function: Write 1 bytes to the eeprom

I via the byte write instruction.
1 The function receives the
1 address.

Digital Function Processor User’s Guide-5th Ed.

5-18

PTPROG.C File

1
/IPre:Receives the starting address
/IPost: the byte is written to the eeprom
[[+++++++++++++H++H
int
bytewr (int addr, unsigned char wrdat)
{ . .
int i;
unsigned char status;

/linstruction format=0000 A010
for(i=0; i<4; i++)
si_low();
if(addr > 255)//is A8=1 or =07
si_high();
else
si_low();
si_low();
si_high();
si_low();

write_8_bits(addr);//write address to eeprom
write_8_bits((int) wrdat);//write data to eeprom

disable_chip();

for (i=0; i<10; i++)
{
delay (1);
status=rdsr(); //read status reg
if((status & 0x0001)==0x0000) //check status bit O
return(NOERROR);

}

return (ERROR);
}

[[++++++++++ page write function ++++++++++
/[Function: Write 4 bytes to the eeprom

I via the page write instruction.

1 The function receives the

I starting address and each byte

I is written to the next consequetive
1 address for 4 addresses.

1

/IPre:Receives the starting address
/IPost: 4 bytes are written to the eeprom
[[+++++++++++++H++H
int
pagewr (int addr)
{ . .

int i;

unsigned char wrdat;

unsigned char status;

Digital Function Processor User’s Guide-5th Ed. 5-19

PTPROG.C File

/linstruction format=0000 A010
for(i=0; i<4; i++)
si_low();
if(addr > 255)//is A8=1 or =07
si_high();
else
si_low();
si_low();
si_high();
si_low();

write_8_bits(addr);//write address to eeprom

/lwrite data to eeprom
for(i=addr; i<addr+4; i++)
{
wrdat=writedat][i];
write_8_bits((int) wrdat);//write data to eeprom

}

disable_chip();

for (i=0; i<10; i++)
{
delay (1);
status = rdsr(); //read status reg
if((status & 0x0001)==0x0000) //check status bit O
return (NOERROR);

}
return (ERROR);

}

[[++++++++++ read_8_bits function ++++++++++
/[Function: reads 8 bits of data from the

/I eeprom, MSB to LSB, 1 bit at a time.

1

/I 1. read a bit (output SO)

/I 2. shift the output (SO) to the bit 0 position (in this case

1 shift right 1 bit).

/I 3. mask it with 0x01.

/I 4. shift it to the appropriate position (shift left i’ times).
/I 5. add it to the previous result in datal variable.

1

/I ex: read first bit (MSB) with datal initialized to 0x00
1

Il read (SO=bitl) :0x02 (0000 0010)

Il shift right 1 (>>1) : 0x02 -> 0x01 (0000 0001)

Il mask with 0x01 : 0x01 '&' 0x01 = 0x01 (0000 0001)
Il shiftto 7 to left : 0xO1 -> 0x80 (1000 0000)

Il add to datal : 0x00 '+ 0x80 = 0x80 (1000 0000)
/IPRE: NONE

/IPOST: return: int - contains data read

Digital Function Processor User’s Guide-5th Ed.

5-20

PTPROG.C File

[/++++++++++++++++
int
read_8_ bits()

{
int i, datal=0;
for (i=7; i>=0; i--)
{
si_low();
datal = datal + (((inpw(DATA_BUS) >> 1) & 0x01) << i);
}
return datal;
}

[[++++++++++ write_8 bits function ++++++++++
/IFunction: write 8 bits to eeprom, 1 bit at a time,
/I MSB->LSB.
/I 1. shift each data bit to the bit O position.
/I 2. mask it with 0x01.
/I 3. check if it is true (high) or false (low).
1
/IPRE: receives the 8 bits of data to be written
/IPOST: data written 1 bit at a time to eeprom
[[+++++++++++++H++H
void
write_8_bits (int data)
{ .

int m;

for (m=7; m>=0; m--)

{

if((data >> m) & 0x01)
si_high();
else
si_low();

}

}

[[++++++++++ disable chip function ++++++++++
/IFunction: chip select is high for

I one clock (SK low to SK high)

1

/Inote: bit7, bit6, bit5, bit4, bit3, bit2, bitl, bit0

/[X X HOLD* SCK SI WP* SO CS*

/I each bit level (high or low) is defined in the header.
1

/IPre:CCC and DR2P cards have been set up.
/IPost:CS = high
[[+++++++++++++H++H
void

disable_chip (void)

{ outp(DATA_BUS, HD_H | SK_L | SI_L|WP_H | SO_L | CS_H); //clock low
outp(DATA_BUS, HD_H | SK_H | SI_L | WP_H | SO_L | CS_H); //clock high

}

[[++++++++++ si_low function ++++++++++

Digital Function Processor User’s Guide-5th Ed.

5-21

PTPROG.C File

/[Function: Input a LOW on Sl:

I Slis held low for
I one clock (SK low to SK high)
I while CS is low.

1

/Inote: bit7, bit6, bit5, bit4, bit3, bit2, bitl, bit0

/I X X HOLD* SCK SI WP* SO Cs*

/I each bit level (high or low) is defined in the header.

1

/IPre:CCC and DR2P cards have been set up.

/IPost:CS = high

[[+++++++++++++H++H

void

si_low (void)

{ outp(DATA_BUS,HD_H|SK L |SILL|WP_H|SO_L|CS_L);
outp(DATA_BUS,HD_H |SK_ H|SILL|WP_H|SO_L|CS_L);

}

[[++++++++++ si_high function ++++++++++
/[Function: Input a HIGH on SI:

I Sl is held high for
I one clock (SK low to SK high)
1 while CS is low.

1

/Inote: bit7, bit6, bits, bit4, bit3, bit2, bitl, bit0

/I X X HOLD* SCK SI WP* SO Cs*

/I each bit level (high or low) is defined in the header.

1

/IPre:CCC and DR2P cards have been set up.

/IPost:CS = high

[[+++++++++++++H++H

void

si_high (void)

{ outp(DATA_BUS,HD_H|SK L |SILH|WP_H|SO_L|CS_L);
outp(DATA_BUS,HD_H | SK_H|SI_LH|WP_H|SO_L|CS_L);

}

[[+++++++++++ monitor function ++++++++++++++++4+
/IFunction: Displays the contents of DUT memory, 16 addresses

1 at a time, on the DFP terminal.
/I The user enters enters an address 0 (zero) to
I highest DUT address via the DFP keyboard.

/I The address are in hex -- example: 1c
/I The contents of 16 addresses of DUT memory will be displayed,

I starting with the entered address.

I example -- user enters: 30

I the contents of address 30 hex (0x30)
I is the first data displayed, followed by
1 the contents of the next 16 addresses.

1

/I This is an extremely simple monitor.

/I Error tolerance is high, and error handling is therefore nil.
/I User cannot backspace. If he errs in typing the address -

Digital Function Processor User’s Guide-5th Ed.

5-22

PTPROG.C File

I just hit return, or the space bar, and try again.
/I Entering an 'X' (exit) or 'Q" (quit) will terminate

1 the function.

/I As long as no 'X' or 'Q" are recieved, the user may

I continue to enter addresses to display the
I Dut memory contents.
1

/IPre:Ptprog.exe is started from the command line
/I with the starting argument -km or -pm.
/I (see get_args function.)

/IPost: The data contents of 16 DUT address locations are

/I displayed, starting with the user input address.

/] ++++++++++++++

void

monitor(void)

{
unsigned char t;// misc counting variable
unsigned char byte; // location to store data

unsigned long adr; // the "address” part of the query to DUT

int count; // counts the bytes returned from DUT

char cmd[80];// keyboard input string

char done = 0;// a loop control item

char *endptr;// needed for strtoul function (string to
/lunsigned long)

while ('done)

{
printf(\M\aDUT Monitor. Enter X to quit.\n");
printf("->"); // prompt:
scanf("%s",cmd);

/I Convert input string to upper case.
for (count = 0; count < 6 ; count++)

{

cmd[count] = (char)toupper(cmd[count]);

}

/I These are the exit criteria: x, X, g, or Q.
if ((cmd[0] == "X) || (cmd[0] == "Q’))
{

done = 1;

printf("\aExiting monitor\n™);

break;

}

/lconvert ascii string into unsigned long (hex= base 16)
adr = strtoul(cmd, &endptr, 16);

printf("adr: %05.5I1X\n",adr); // verify address.

/l read 16 bytes
rd(adr,adr+16);

for (t=0; t<16; t++)
printf("%2.2x ", readdat[t]);

Digital Function Processor User’s Guide-5th Ed.

5-23

PTPROG.C File

} // end of while !done
} // end of Monitor

[[++++++++++ cleanup function ++++++++++++++
/[Function: Release the DR2P cards from
/I DFP control, close all files+ handles.
1
/IPre:Program is about to exit (return).
/IPost: DFP releases DR2P control, all
/I files + handles closed.
[[++++++++++++H++H
void
cleanup(void)
{
releaseDR(CD);// Disable PrompTest
close(handle);// Close com port handle
fcloseall();// Close any open files
return;

}

[[++++++++++ process message function ++++++++++++++
/IFunction: print failure/error message
1 to both DFP and 18xx screen
1
/IPre:Receives msg buffer with formatted message string.
/IPost: Prints message to DFP screen.
/I Sends message to 18xx to printed to 18xx screen.
[[++++++++++++H++H
void
print_Message(char *msg)
{
printf("%s",msgq); //print to DFP screen
send18xxMsg(handle,DFP_18XX_MSG,msg); //send to 18xx DigFuncProc
/lworksheet
return;

}

Digital Function Processor User’s Guide-5th Ed.

5-24

Custom Example —
Parallel Flash in Free Air 6

PT2.INI Examples—28F010/020cccvvvvvvvieeerrennnnns 6-2
PTPROG.C Example—28F010/020........ccccvveviererrennnnn. 6-2

The 18XX DigFuncProc testsheet sends the subdirectory path to
SLAVE.EXE on the DFP computer and to start the appropriate
PTPROG.EXE (there are no arguments for this application).
PTPROG.EXE determines which flash memory it is programing
(28F010 or 28F020) via the PT2.INI file. PTPROG.EXE erases the
flash if necessary, then writes the customer data (the .img file) to
the flash. The program then verifies the write and then sends the
PASS/FAIL information to the 18XX DigFuncProc testsheet.

Ptprog.exe can also be started from the DFP keyboard.

Figure 6.1 Parallel Flash In Free Air Interconnect Diagram

28F010/020 Fixture DR2P 0 DFP

PORT A
Bits 0-7 CCCO

PORT B
Bits 0-7

WE node 240 — PORT C ccel
OE node 241 —| Bit 0/1

CE node 242 — PORT D
VPP node 248 —

DR2P 1

A0-A16/17 nodes 192-208/9

DO-D7 nodes 224-231 —

PORT A
Bits 0-7

PORT B

PORT C
Bits 0-2

PORT D
Bit 0

Custom Example — Parallel Flash in Free Air

PT2.INI File

Below is the PT2.INI file used in the 28F010 example.

L,IC1,28F010,test.dat,87,131072,0,1
R,note-format 87 = Motorola S record type
M,89,B4

Below is the PT2.INI file used in the 28F020 example.

L,IC1,28F020,test.dat,87,262144,0,0
R,note-format 87 = Motorola S record type
M,01,2A

PTPROG.C File

Below is the ptprog.c file used in this example.

/7\-
*** Parallel Flash Example ***

Custom Application For programming 28F010/28F020 Flash Memory
Filename: ptprog.c

Component/s: 28F010, 28F020

Aliases : AM28F010, i28F010, AM28F020, i28F020

Device Manufacturer: AMD, Intel
Device Function: 28F010:131072 x 8 Flash Memory
: 28F020:262144 x 8 Flash Memory
IC Package: 32 Pin DIP
Written by: Sidney Fluhrer - Teradyne - ATWC
: Barbara Ryan - Teradyne - ATWC
Date Created: 12-OCT-95
Original Source:
Fixture Requirements: see Wiring below
Files Required: ptprog.exe (compiled ptprog.c)
pt2.ini (see pt2.ini below)
data file (see pt2.ini below)
Written with OS: DFP - B.O
18xx - F.0
To use this program with earlier versions
(either DFP or 18xx)
comment out the 'send18xxMsg()’
function call in the
print_Message() function.

6-2 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

Test Description:

28F010 Flash Memory:1M (131072 x 8-Bit)

28F020 Flash Memory:2M (262144 x 8-Bit)
CMOS
12.0 Volt-write/erase cycles
Bulk Erase

This program can be used for either the 28F010 or
28F020 since only the memory size is the differing
factor. The program determines which device it is
currently testing via the memory size and device
type in the pt2.ini file. (See pt2.ini examples below.)

The program will check for an erased state, erase if
necessary, program per customer provided data, and
verify the programming.

Program Organization Outline:
1. open com ports/set up parameters
2. get program arguments
3. check arguments
note: 1 optional program argument allowed:
arg=e or v
where:
e = erase device only
v = verify device only
4. open, read, close pt2.ini file - retrieve:
device type
device size (last_address)
byte position
mfg id and device code
data .img file name
5. open data file
6. set up CCC/DR2P cards
7. set up timers
8. initilize device
9. check device for valid mfg id/device code
10. check device for erased condition
note- if NOT erased - check if
programed data is VALID (verify)
11. erase device if necessary
12. program device
13. verify device -
verify via reading each address and
checking the byte against the
corresponding data .img file byte

Digital Function Processor User’s Guide-5th Ed. 6-3

Custom Example — Parallel Flash in Free Air

14. cleanup:

write PASS/FAIL to 18xx (pcom.exe)

enter monitor mode if monitor flag true (only if
program started from DFP keyboard for
debug)

close all file and ports

release DR's

exit(0)

18xx Worksheet/Argument usage:
1. DigFuncProc worksheet example:
Source Dir:mod1
Arguments:
Timeout:5

modl = subdirectory to find ptprog.exe
= no arguments = default (see below)

9 = timeout in seconds for DigFuncProc worksheet
Arguments:
1. no arguments ->default = erase/program/verify.
2.e ->erase only (will not program or verify)
3.v ->verify only (will not erase or program)

Sample pt2.ini - 28F010:
L,IC1,28F010,ic1.dat,87,131072,0,1
M,89,B4

where:L = local device tag
IC1 = board identifier
28F010= device type
icl.dat = data source file

87 = format of data source file (87 = motorola s-record)
131072= memory size

0 = byte position

1 = fill character (fill s-record data with FF)

M = manufacturer tag

89 = manufacturer code

B4 = device code

Sample pt2.ini - 28F020:
L,IC2,28F020,ic2.dat,87,262144,0,1
M,01,2A

6-4 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

Wiring
signal: DFP card:DFP node/s:
AO0-Al6/17card O 192-208/209 (Port A, B, C)
D0-D8 card 1 224-231 (Port A)
WE* card 1 240 (Port C)
OE* card 1 241 (Port C)
CE* card 1 242 (Port C)
VPP card 1 248 (Port D)
Statistics-28F010/020:
18xx: O.S. Version - E.3/F.0
DFP: O.S. Version - A.3/B.0

AmiBios - ISA BUS CLOCK SELECTION = AUTO

AmiBios - DRAM = FAST

SmartDrv - Set (times taken after 1 initial
run to load smart drv memory)

Compiler:Turbo C - 3.0

sample of: 5P28F010 -120 (Intel)

sample of: 2AM28F020 -150 (AMD)

aprox. times for programming an erased 28F010/020:
28F010 = 131072 x 8 bits
28F020 = 266144 x 8 bits

28F010 28F020
setup 110 .110s
device/mfg id check .110 .110s
check all erase .600 1.100s *

program 4.500 8.850s
verify all ~ 1.000 1.900s
cleanup .110 .110s

18xx/DFP memory swap .200 .200s

Total program 6.630 12.380sec

(*NOTE: a bulk erase for 28F010 may add aprox. 3-11 sec)
a bulk erase for 28F020 may add aprox. 8-20 sec)

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <conio.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <dos.h>
#include <errno.h>
#include <ctype.h>

#include "pt2.h"

Digital Function Processor User’s Guide-5th Ed.

6-5

Custom Example — Parallel Flash in Free Air

#define MAX_WIDTH1// One device and datafile to
/I be identified via the pt2.ini file

/I[CCC+DR2P control
/Inote: bus or channel direction (input/output) is from
/I the DFP's point of view
#define CTC_CARDCARD1//CTC timer CCC card 1
#define INC_ADDRCARDO|ADD_INC//increment address bus card 0
#define CNTL_BUSCARD1|PC_DATA//control bus data = C bus, card 1
#define DATA_BUSCARD1|PA_DATA//data bus data = A bus, card 1
#define DATA_DIRCARD1|PAB_CNTL//data bus control (A,B direction)
#define OUTPUTOXFE30 //data bus output FROM DFP,

/Il + VPP relay closed
#define INPUTOXFE33 //data bus input TO DFP,

/Il + VPP relay closed

/ldevice control - read, write, chip enable

#define WE_LOx00 /IWE* = low
#define WE_HOx01 /IWE* = high
#define OE_LOx00 /IOE* = low
#define OE_HO0x02 /IOE* = high
#define CE_LOx00 /ICE* = low
#define CE_HOx04 /ICE* = high

static charnotice[]={"Digital Function Processor system"
" Copyright (C) 1993,1994 Teradyne Inc.\n"},
filename[2][13],//store up to 2 data file names
msg[l_REC_SIZ];//message buffer

static FILE*ini_file,//point to pt2.ini file
*failfile, //point to fail file
*datafile[2];//able to point to 2 data files

static inthandle, /lcom port handle
code_count, //number of mfg/id codes allowed
error,
monitorFlag,
eraseFlag,
programFlag,
verifyFlag;

static longlast_address,
program_count;//total program memory writes

static unsigned charmfg_code[l_REC_SIZ],
device_code[l_REC_SIZ];

static unsigned intfailval;
/* Prototypes */

/I* general functions

6-6 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

int main(int argc, char **argv);

static void open_com_port(void);

static void get_args (int argc, char **argv, char *args);
static void usage(void);

static void check_args(char *args);

static void open_pt2ini(void);

static int read_ini_data(char *record);

static void open_data_file(void);

static void read_datafile(FILE *datafile, unsigned char *data_bhyte);

static void init_dfp_cards(void);
static void ccc_timer_setup(void);
static void delay_7us (void);
static void delay_10ms (void);
static void monitor(void);

static void cleanup(void);

static void print_Message(char *msg);//print msg to DFP + 18xx screen

[/[* functions for this device

static void reset_command(void);
static void turn_on_VPP(void);

static void check_product_code(void);

static int check_erase (long start_addr, long end_addr);

static void erase_memory (void);

static void program_memory (long start_addr, long end_addr);

static void program_byte (unsigned char data);
static int verify_memory(void);

static void write_byte(unsigned char data);
static unsigned char read_byte(void);

static void enable_read_byte(void);

static void disable_read_byte(void);

static unsigned char read_byte _only(void);

/**/
int
main(int argc, char **argv)

{
char args[MAX_COM_SIZ];

clock_tclock_ticks;

failval=0;// initialize failure flag

/**/

/* Open DFP COM port + set port parameters

/**/

open_com_port();
/**/

/* Display copyright notice */

/**/

printf("\n%s",notice);

/**/

Digital Function Processor User’s Guide-5th Ed.

*

6-7

Custom Example — Parallel Flash in Free Air

/* Create argument string + check/store arguments */

/**/

get_args (argc, argv, args);
printf("The argument string = '%s'.\n",args);

check_args(args);//sets up program variables:
/leraseFlag
/lprogramFlag
[IverifyFlag

/**/

/* Open, read, close pt2.ini file */

/**/

open_pt2ini();

/**/

/* Open Data File/s */

/**/

open_data_file();

/**/

/* Initialize Channel Control Cards + DR2P Cards */

/**/

init_dfp_cards();//initialize CCC + DR2P cards

/I Setup 7us and 10ms delay timers
ccc_timer_setup();

/**/

/* Initialize Device */

/**/

/I Initialize device -> Enable Device

Ooutp(CNTL_BUS, CE_H | OE_H | WE_H);
outp(CNTL_BUS, CE_L | OE_H | WE_H);
reset_command();//start out with device in known condition

/**/

/* Read Product Identification */

/**/

check_product_code();

/**/

/* Check Erased Condition */

/**/

error = NOERROR;//init error variable
if('failval && eraseFlag)

{
printf("Checking if Flash is Erased.\n");

6-8

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

error = check_erase (0x0000, last_address);
if (error==NOERROR)
eraseFlag=0;

}

/**/

/* 1If NOT erased - check if contents are good */

/**/

if (failval && error && verifyFlag)
{
printf("Flash not Erased -> Verifying Flash.\n");
error = verify_memory();//datafile verification
if (lerror)//if data verified-program is done!
{
printf("Memory Verified!\n");
eraseFlag=0;
programFlag=0;
verifyFlag=0;
}
}

/**/

/* Erase flash */

/**/

if (failval && eraseFlag)

{
printf("Erasing Flash.\n");

erase_memory();

if (failval)

{
sprintf(msg,"Flash failed to Erase!"\n");
print_Message(msg);

/**/
/* Program Flash Memory */

/**/

if('failval && programFlag)// Program Flash
{

printf("Programming Flash.\n");
program_memory(0x00000, last_address);

if (failval)
{
sprintf(msg,"Flash failed to Program!"\n");
print_Message(msg);
}
}

Digital Function Processor User’s Guide-5th Ed. 6-9

Custom Example — Parallel Flash in Free Air

/**/

/* Verify Flash Memory */

/**/

reset_command();//Port A out-> Reset Command
selVpp (1,0FF);// Disable Vpp

if (Mfailval && verifyFlag)// Verify Flash
{
printf(*Verifying Flash.\n");
error = verify_memory();//datafile verification

if (error)
{
failval=1;
sprintf(msg,"Flash failed to Verify!"\n");
print_Message(msg);
}
}

/! Disable Device
outp(CNTL_BUS, CE_H | OE_H | WE_H);

/**/

/* Cleanup: */

/* send 18xx PASS/FAIL */

/* enter monitor mode if flag is set */

/* cleanup() function: release (CLR) DR2p's */
* close com handle */

[* close any open files */

/**/

if (failval)
{
printf("FAILED!!\n");
keep_alive(handle,FAIL);
}

else

{
printf("PASSED!!\n");
keep_alive(handle,PASS);

}

#ifdef TURBO//if use TURBO C compiler

clock_ticks = clock();

printf("Elapsed time = %f seconds.\n",clock_ticks / CLK_TCK);
#endif

if (monitorFlag)
monitor();

cleanup();//release DFP control, close files

return(0);

6-10 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

} /lend main

/**/

* PROGRAM FUNCTIONS */

/**/

[[++++++++++ open_com_port function ++++++++++

/[Function: Open the DFP computor com port and set paremters.
/I 1f the port can't be opened or the parameters can't

/I be set, the program exits.

/I No message is sent to 18xx, since the com port isn't

/I open to send it!

1

/IPre: No preconditions

/IPost: DPF computer com port open.

I port parameters: 57600 baud

I no parity

1 8 bits

I 1 stop bit
[[+++++++++++++++H
void

open_com_port(void)

{

/lopen com port 1
if ((handle = open("com1”,(int)(O_BINARY+O_RDWR))) == -1)
{
printf("Error opening COM port\n™); //not send to 18xx,
/Iport not open!
exit(PTPROG_PRT_ERROR);

}

/Iset com port 1 parameters
if (!serial_set(handle,BAUD57600,PARITY_NONE,LENGTH_8,STOPBIT_1,
PROT_NONE,0,0))
{
printf("Error setting port parameters\n®); //not send to 18xx,
/Iport parameters not ok!
close(handle);// Close com port handle
exit(PTPROG_PARAM_ERRORY);

}

return;

}

[[++++++++++ get_args function ++++++++++
/[Function: Get the optional argument string for ptprog.c.
1

/I This functions seperates the "starting switch”

/I statements for how the program was started from the
/I optional arguments for the program.

1

/I Two possibilites for starting ptprog are

1 1. slave.

I 2. DFP keyboard.

Digital Function Processor User’s Guide-5th Ed. 6-11

Custom Example — Parallel Flash in Free Air

/I Slave ALWAYS inserts -s into the argument string to

/I alert ptprog that slave initiated the program -- and

/I therefore the REST OF THE ARGUMENTS are passed
/I following the -s (seperated by space/s).

/I For debug when you are starting ptprog from the

/I DFP keyboard, you may want to sometimes have the
/I arguments come from the keyboard, or sometimes

/I from the port (18xx testsheet).

/I The possible "start switch" combinations:

I 1. ptprog started by slave:

I ptprog -s (args from slave)

I 2. ptprog started from DFP keyboard:

I ptprog -s (args from keyboard --emulating slave)
I ptprog -k (agrs from keyboard)

I ptprog -km(args keyboard)

I ptprog -p (args from port --18xx testsheet)

I ptprog -pm(args from port --18xx testsheet)

/I (switch meanings: s=slave, k=keyboard, p=port, m=monitor)

/I Examples with arguments:

I 1. start by slave

I ptprog -s [argl] [arg2]

I 2. start from DFP keyboard - type:

I ptprog -s [argl] [arg2] <enter>

I ptprog -k [argl] [arg2] <enter>

I ptprog -km [arlg] [arg2] <enter>

I ptprog -p <enter>

I 18xx testsheet <press start>
I [argl] [arg2]

I ptprog -pm <enter>

I 18xx testsheet <press start>
I [argl] [arg2]

/I This function will fill the variable args[] with only

| the arguments following the switches for where the program

/Il was started: the -s, -k, -km, -p, -pm are NOT saved.

/I Furthermore, the 'P' command and subdirectory name are NOT
/I saved from the port string (18xx string).

=~

I Example: ptprog -km hello world

I -> args = "hello world"

I Example: ptprog -k

I ->args =" (the null string)

I Example: ptprog -p

I 18xx sends string: Pmod1 hello world\n
I -> args = "hello world"

1

/IPre: Ptprog is started from the command line or via Slave.

I Optional arguments are sent from the command line or via
I the com port.

1

6-12 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

/IPost: Fills the variable args[] with the argument string.
/I Updates global variable monitorFlag.
/] +++++++++++++++H++H
void
get_args (int argc, char **argv, char *args)
{
char *arg_ptr;
int idx;

/linitialize to default condition
monitorFlag = 0;

if (argc < 2 || argv[1][O] !="-")
usage();
switch (argv[1][1])
{
case 'k': if (argv[1][2] =='m")
monitorFlag = 1,
case 's'": *args = 0x0;
for (idx=2; idx<argc; idx++)
{iif (idx = 2)
strcat(args," ");
strcat(args,argv[idx]);
}
break;
case 'p": if (argv[1][2] =='mM")
monitorFlag = 1,
puts("\nWaiting for arguments from 18XX.");
puts("Press ESC to exit.\n");
if(read_port(handle,args,0))
exit(0);
/IRemove charactors up to the first space
arg_ptr = strstr(args,” ");
if (arg_ptr == NULL)
*args = 0x0;
else
strcpy(args,arg_ptr + 1);
break;
default: usage();

}

return;

}

[[+++++++++++ usage function +++++++++++++++++
/[Function: Display the switch statements allowed

/I for how to start this program from

/I the command line.

/IPre:Ptprog.exe is started from the command line

/I or by Slave.

/IPost: Displays the usage argument switches for starting
/I ptprog.exe.

/] +++++++++++++++++H
void

usage(void)

Digital Function Processor User’s Guide-5th Ed. 6-13

Custom Example — Parallel Flash in Free Air

printf("\n%s%s%s%s%s%s%s%s%Ss%Ss%s",

"USAGE: ptprog <switch> [arguments]\n",

switch\n",

-S Emulate input from Slave via DFP keyboard,\n",
no Monitor option.\n",

" -k[m] Arguments taken from DFP command line,\n",
optional Monitor.\n",

-p[m] Wait for arguments from port (18xx Worksheet),\n",
optional Monitor.\n",

" -h Help\n",
" -? Help\n",
" Note: Switch must be lower case!!\n");

exit(0);
}

[[++++++++++ check_args function ++++++++++
/IFunction: Check program arguments and

I fill variables accordingly.

/I This application accepts 3 possibilities:

/I 1. no arguments - default -erase, program, verify
/I 2. e argument - will erase only

/I 3. vargument - will verify only

/IPre: get_args function has screened the program

I arguments and put them into the
I string variable args.
/IPost: updates variables:
I default erase verify
I eraseFlagl 1 0
I programFlag10 0
I verifyFlagl 0 1
[[+++++++++++++++H
void
check_args(char *args)
{
/linitialize to default condition
eraseFlag=1,
programFlag=1,;
verifyFlag=1,;

if (strlen(args)>0)
{
if (args[0]=="¢e")
{ programFlag=0;
verifyFlag=0;
printf("** Erase only **\n");
}
else if (args[0]=="v")
{ programFlag=0;
eraseFlag=0;
printf("** Verify only **\n");
}
}

return;

6-14 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

[[++++++++++ open_pt2.ini function ++++++++++
/[Function: Opens, reads, closes the pt2.ini file.
I Calls the read_ini_data function to extract

I specific information from record/s.
/[Pre:none

/IPost: If pt2.ini file not exist-> program exits.

/I Otherwise:

/I 1. fills the local variable irec with the ini.

/I 2. Stores specific info from record/s via the

I read_ini_data function.

[[++++++++++++++

void
open_pt2ini(void)
{
charirec[|_REC_SIZ];/Ipt2.ini input buffer

/lopen pt2.ini file
if ((ini_file = fopen("pt2.ini","rt")) == NULL)
{ sprintf(msg,"Error opening pt2.ini\n");
print_Message(msg);
cleanup();
exit(INIl_ERROR);
}

/l Read all the lines in the pt2.ini file
while(fgets(irec, |_REC_SIZ - 1, ini_file) '= NULL)
{if ((error = read_ini_data(irec)) != 0)
{if (error == WIDTH_ERROR)
sprintf(msg,"Error reading pt2.ini--WIDTH_ERROR");
else
sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(error);
}
}

if('feof(ini_file))

{ sprintf(msg,"Error reading pt2.ini\n");
print_Message(msg);
cleanup();
exit(INIl_ERROR);

}

fclose(ini_file);

return;

}

[[++++++++++ read_ini_data function ++++++++++++++
/[Function: A. Looks for 'L' tag record. The L tag

Digital Function Processor User’s Guide-5th Ed.

6-15

Custom Example — Parallel Flash in Free Air

1
1
1
1
1
1
1
1
1
1
1
1

record had device specific information.

For this program the function gets the

device type, memory size, device position, and

data filename/s. The data filename is processed

to drop any name extensions and adds the .img

extension. Also the device type and memory

sized are checked for a "match" since this

program can be used for 28F010 or a 28F020.
B. Looks for 'M' tag record. The M

tag record has mfg id and device code

information.

/IPre:Recieves a record from the pt2.ini file.

1

/IPost: If the record is an L record:

1

1. variable device_type = device type
2. variable last_address = memory size
3. variable bytepos = byte position

4. variable filename[][] = datafile/s with .img extension

If record is M record:
1. variable mfg_ptr = mfg codes
2. variable id = device codes

3. variable code_count = number of mfg/device code pairs

[[+++++++++++++ b

int

read_ini_data(char *record)

{

c

*ptr;
char match[4][8]={"28F010","131072","28F020","262144"};
intpos,

mfg =1,

error =0,

field = 2;
unsigned char*mfg_ptr,

harimgfile[13],
bytepos|[2],
mem_size[10],
code[l_REC_SIZ],
device_type[30],

*id_ptr;

/I Process L type entries

if
{

6-1

(toupper(record[0]) =="'L")

/I Get device type, memory size and byte position
get_field(3,device_type,record);

printf("Device programming = %s\n",device_type);
get_field(6,mem_size,record);
get_field(7,bytepos,record);

pos=atoi(bytepos);

last_address = atol(mem_size);

printf("Last Address = %IX Hex\n",last_address);

6

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

if (strcmp(device_type,match[0])==0)//if device=28f010

{if (strcmp(mem_size,match[1])!=0)//check mem size = 131072
error=INI_ERROR;

}

else if (strcmp(device_type,match[2])==0)//if device=28f020

{if (strcmp(mem_size,match[3])!=0)//check mem size = 266,244
error=INI_ERROR;

}

else

error=INI_ERROR;//device type not in match[] array

if (error)
{ sprintf(msg,"ERROR, Incorrect device type or memory size in pt2.ini\n");
print_Message(msg);

}

/I Get image filename(s)
get_field(4,imdfile,record);
ptr = strstr(imgfile,".");

if (ptr 1= NULL)

*ptr = Ox0;
strcat(imgfile,".img");
printf("infile = %s\n",imgfile);
if (pos >= MAX_WIDTH)

error=WIDTH_ERROR,;
strepy(filename[pos],imgdfile);

}

/I Process M type entries
if (toupper(record[Q]) =='M")
{ /I Hexify MFG Codes and store in device and mfg code buffer
mfg_ptr = mfg_code;
id_ptr = device_code;
while (get_field(field,code,record) '= ERROR) // Read all MFG Codes
{ if (mfg)
*mfg_ptr++ = (unsigned char)strtol(code,&ptr,16);
else
*id_ptr++ = (unsigned char)strtol(code,&ptr,16);
mfg = mfg "~ 1;
field++;
}
/I Count the number of codes
code_count = 0;
while (mfg_ptr-- = mfg_code)
code_count++;

}

return(error);

}

[[++++++++++ open data files function ++++++++++
/IFunction: Opens the .img data file/s containing

I the data for programing

1 device/s.

I The file/s are pointed to by

Digital Function Processor User’s Guide-5th Ed.

Custom Example — Parallel Flash in Free Air

I a datafile pointer array.

I This application only uses

I one datafile pointer.
/[Pre:none

/IPost: If file/s not exist-> program exits.
/I Otherwise:

/I 1. datafile pointers -> to file/s

void

open_data_file(void)

{

/I Open data file

datafile[0] = fopen(filename[0],"r+b");

if (datafile[0] == 0)

{ sprintf(msg,"Error opening %s\n" filename[0]);
print_Message(msg);
cleanup();
exit(FOPEN_ERROR);

}

}

[[++++++++++ init_dfp_cards function ++++++++++
/IFunction: Initialize the CCC and DR2P cards

I for this appliction.

1/ Two cards are used

1/ card 0 = address mode = address bus
1/ card 1 = data mode = data bus +

1/ control bus

1

/[Pre: None.

/IPost. CCC + DR2P cards are initialized.
[[++++++++++++++++
void

init_dfp_cards()

{

int n, addrsize;

pt2init(); //DFP init

initCard(0); //card O init

initCard(1); //card 1 init

releaseDR(0); //this will clear all relays

releaseDR(1); //this will clear all relays

setMode(0,ADDRESS); //card 0 address mode

ptEnable(0,ON); /lenable DFP, card O

setCountDir(0,UP); //direction of count is up, card O
outpw(CARDO|PAB_CNTL,0xFFO0O); //Port A static out, Port B static out
outp(CARDO|PC_CNTL,0x03); //Port C cntl, card 0

setMode(1,DATA);//card 1, data mode

ptEnable(1,0N); //enable DFP, card 1
outpw(DATA_DIR,INPUT);// Port A input, Port B input
outp(CARD1|PC_CNTL,0x07);// Port C control bits 0,1,2 output

delay(0); // Calibrate delay

6-18 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

if (last_address==0x40000)
addrsize = 18;

else if (last_address==0x20000)
addrsize = 17;

/I Set relays for address
for (n=0; n < addrsize; n++)
outpw(CARDO|GA_INST,D_REED|nodA[n]|SET); // Address bus

/I Set relays for data
for (n=0; n < 8; n++)
outpw(CARD1|GA_INST,D_REED|nodA[n]|SET); // Data bus, card 1, Port A

/I Set relays for control
outpw(CARD1|GA_INST,D_REED|NOD16|SET); // WE*, card 1, Port C
outpw(CARD1|GA_INST,D_REED|NOD17|SET); // OE*, card 1, Port C
outpw(CARD1|GA_INST,D_REED|NODI18|SET); // CE*, card 1, Port C
delay(50);// wait for relays, 50 ms

return;

}

[[++++++++++ ccc_timer_setup function ++++++++++
/IFunction: Sets up delays using 8253

I delay time = (count * .5us) + 3-5us software overhead
1

I When dealing with delays in the low

I micro-seconds(us), consideration must be
I given for the time before the

I programed delay can be triggered

I and for the time after status

I returns true before the next command
I is given.

I Best case is 1.5 us for each command,

I therefore the time really aimed

I for the 10us delay in this application
I is 10us less two commands, or

I 10us - 3us= 7us.

1

/[Pre: CCC card is in DFP mode.

/IPost: card O : timer O : 10us delay

I card O : timer 1 : 10ms delay

[[+++++++++++++++H

void

ccc_timer_setup(void)

{
/I Set up timer 0 on CTC_CARD for 10us delay
outp(CTC_CARD|CTC_MODE,0x32);
outpw(CTC_CARDI|CTC_CNTO,(unsigned int) 8);

/ISet up timer 1 on CTC_CARD for 10ms delay

outp(CTC_CARD|CTC_MODE,0x72);
outpw(CTC_CARDI|CTC_CNT1,(unsigned int) 20000);

Digital Function Processor User’s Guide-5th Ed. 6-19

Custom Example — Parallel Flash in Free Air

return;

}

/] +++++++++++++++++
void
delay_7us (void)
{
/I delay 7us - wait for status bit true
outp(CTC_CARD|TRG_0,0);//start delay
while(!(readStatus(1) & 0x04));//poll for 7us delay done
return;

}

/] +++++++++++++++++
void
delay_10ms (void)
{
/I delay 10ms - wait for status bit true
outp(CTC_CARD|TRG_1,0);//start delay
while(!(readStatus(1) & 0x08));//poll for 10ms delay done
return;

}

[[++++++++++ check_product_code function ++++++++++
/IFunction: Checks for a match of the manufacturing id
/I device code with the codes found in the pt2.ini file
1
/[Pre: CCC + DR2P cards initialized
/IPost: updates global variable failval
1 match: failval = 0
1 error: failval = 1
[[+++++++++++++++H
void
check_product_code(void)
{

intidx,

matched;
unsigned char mfg_byte,
id_byte;

turn_on_VPP();//Vpp ON = 12V

/IRead Product Identification

outpw(DATA_DIR,OUTPUT);// Port A output
setCount(0,0x00,0x0000);// Autoselect Command Sequence
write_byte (0x90);

/* Read Product ID */

outpw(DATA_DIR,INPUT); // Port A input

mfg_byte = read_byte (); // Read Manufactures Code
outp(INC_ADDR, 0);

id_byte = read_byte (); // Read Device Code
printf("Manufacture Code = %2.2X, ",mfg_byte);
printf("Device Code = %2.2X.\n",id_byte);

6-20 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

/I Check Manufacture Code and Device Code against PT2.INI 'M' Entry
idx = 0;
matched = 0O;
while (idx < code_count)
{ if (mfg_code[idx] == mfg_byte && device_code[idx] == id_byte)
matched = 1;
idx++;

}

if (!'matched)

{ failval = 1;
sprintf(msg,"Error, Manufacture or Device code does not match!\n");
print_Message(msg);
sprintf(msg,"Manufacture Code = %2.2X\n",mfg_byte);
print_Message(msg);
sprintf(msg,"Device Code = %2.2X\n",id_bhyte);
print_Message(msg);

}

reset_command();//Port A out-> Reset Command
selVpp (1,0FF);// Disable Vpp
return;

}

[[++++++++++ check _erase function ++++++++++
/[Function: Sequentially checks all locations for

/I the erased condition (0xFF) starting with

/I the starting address thru to the

/I ending address. Return "error" representing

/I chip is erased or not.

1

/IPre: receives: long start_addr

1 long end_addr

/IPost: returns error:

I error = NOERROR - device erased
I error = ERROR - device NOT erased

[[++++++++++++++H
int
check_erase (long start_addr, long end_addr)

{
unsigned int haddr,
laddr;
long addr;

haddr = (int)((start_addr >> 16) & 0xO0FF);
laddr = (int)(start_addr & OxFFFF);
setCount(0,haddr,laddr);// Card 0, addr high, addr low
outpw(DATA_DIR,INPUT);// Port A input
enable_read_byte ();
for (addr = start_addr; addr <= end_addr; addr++)
{ if (read_byte only() '= OxFF)

{ disable_read_byte ();

Digital Function Processor User’s Guide-5th Ed.

6-21

Custom Example — Parallel Flash in Free Air

}

return (ERROR);

}
outp(INC_ADDR, 0);// Increment Address

}
disable_read_byte ();
return (NOERROR);

[[++++++++++ erase_memory function ++++++++++
/[Function: 1. Program all locations to zero.

1
1
1

2. Bulk erase (all locations to OxFF).
The erase may be repeated 1000 times.

/IPre: The device is not erased.
/IPost: failval = 0 - device succussfully erased

1

failval = 1 - device failed to erase.

[[++++++++++++++++
void
erase_memory (void)

{

longaddr;

unsigned inthaddr,
laddr;

int pulse_count;

unsigned chardata_byte;

turn_on_VPP();//Vpp ON = 12V

/I Program all locations to zero
setCount(0,0x00,0x0000);// Card 0, addr high, addr low
outpw(DATA_DIR,INPUT);// Port A input

for (addr = 0; addr < last_address; addr++)

{ if (read_byte() != 0x00)

{ program_byte (0x00);
outpw(DATA_DIR,OUTPUT);// Port A output
write_byte (0x00); // Read command
outpw(DATA_DIR,INPUT);// Port A input

}
outp(INC_ADDR, 0);// Increment Address

}
if (failval)
return;

/I Erase Command Sequence
setCount(0,0x00,0x0000);// Card 0, addr high, addr low
pulse_count = 0;
addr = 0x000000;
while (pulse_count < 1000)
{
outpw(DATA_DIR,OUTPUT);// Port A output
write_byte (0x20); // Erase Setup Command
write_byte (0x20); // Erase Command
delay_10ms ();

6-22

Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

while (addr < last_address)
{ outpw(DATA_DIR,OUTPUT);// Port A output
write_byte (OxAOQ); // Erase Verify Command

outpw(DATA_DIR,INPUT);// Port A input
outpw(DATA_DIR,INPUT);// dummy -for 6us delay

data_byte = read_hyte();
if (data_byte = OxFF)
{ pulse_count++;
break;
}
addr++;
outp(INC_ADDR, 0);// Increment Address

}

if (addr == last_address)

{ printf("tTotal Erase count=%d\n",pulse_count);
outpw(DATA_DIR,OUTPUT);// Port A output
write_byte (0x00); // Read command
return;

}

}

failval = 1;// Exceeded pulse count limit

sprintf(msg,"Erase pulse count EXCEEDED = %d!"\n",pulse_count);
print_Message(msg);

return;

}

[[++++++++++ program_memory function ++++++++++
/[Function: 1. Turn on VPP (12V).

1 2. Loads/increments an address location.

I 3. Gets a data byte via read_datafile

1 function.

I 4. Call the program_byte function.

I 5. Repeat steps 2,3,4 till all addresses

I are programed or fails.

1 6. Turn off VPP, reset device, and return.

1

/I note: program_count is used for debug to

I check if device is trying more than

I one write per address.

1

/IPre: recieves: long start_addr

/IPost: failval =0 - device successfully programmed

/I failval '= 0 - device failed to program
[[+++++++++++++++H

void
program_memory (long start_addr, long end_addr)
{

long addr;

unsigned chardata_byte;
unsigned inthaddr,
laddr;

Digital Function Processor User’s Guide-5th Ed. 6-23

Custom Example — Parallel Flash in Free Air

program_count = 0;
turn_on_VPP();//Vpp ON = 12V

rewind (datafile[0]);// Return to the begining of data file
addr = start_addr;
haddr = (int)((addr >> 16) & Ox00FF);
laddr = (int)(addr & OXFFFF);
setCount(0,haddr,laddr);// Card O
while (addr < end_addr && !failval)
{
read_datafile(datafile[0], &data_byte); //Read next byte
if (data_byte '= OxFF)
program_byte (data_byte);
addr++;
outp(INC_ADDR, 0);// Increment Address

}

printf("\tTotal Program Count =%Ild\n",program_count);
return;

}

[[++++++++++ program_byte function ++++++++++
/[Function: 1. Tries to program a location up to

1 25 times.

1

/IPre: Receives a data byte.

/IPost: failval = 0 - device successfully programmed

/I failval = 1 - device failed to program
[[++++++++++++++++

void
program_byte (unsigned char data)
{
unsigned charverify_data;
int pulse_count = 0;
if (failval)
return;

while (pulse_count < 25)
{ outpw(DATA_DIR,OUTPUT);// Port A output

write_byte (0x40); // Program Setup command
write_byte (data); // Program data

/ldelay 10us and verify command

/l(actually delay 7us, see ccc_timer_setup function)
outp(CTC_CARD|TRG_0,0);//start delay

outp(CNTL_BUS,CE_L | OE_H | WE_L);//address latched (wr=low)
outp(DATA_BUS,0xCO0);//Data = verify

while(!(readStatus(1) & 0x08));//poll for delay done
outp(CNTL_BUS,CE_L | OE_H | WE_H);//data latched (wr=high)

6-24 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

outpw(DATA_DIR,INPUT);// Port A input
outpw(DATA_DIR,INPUT);// dummy -for 6us delay

verify_data = read_byte (); // Verify Data

program_count++;
if (verify_data == data)
return;

pulse_count++;
}
failval = 1;
sprintf(msg,"Programming Pulse Count EXCEEDED=%d!"\n",pulse_count);
print_Message(msg);
return;

}

[[++++++++++ read_datafile function ++++++++++
/[Function: Reads a data byte from a file.
1 Exits if read error, otherwise
I stores data byte.
1
/IPre: Receives: pointer to a data file.
I pointer to a data_byte variable.
/[Post: error -> exits with FREAD ERROR
/I noerror-> data pointed to by data_byte pointer
[[+++++++++++++++H
void
read_datafile(FILE *datafile, unsigned char *data_byte)
{
*data_byte = (unsigned char)(fgetc(datafile)); //Get data byte
if (feof(datafile))
{
sprintf(msg,"Error reading data file\n");
print_Message(msg);
cleanup();
exit (FREAD_ERROR);
}

return;

}

[[++++++++++ verify_memory function ++++++++++
/[Function: Verifies all locations have

I the correct data programmed.
I Each location is compared with the
1 data file.

/I The result is returned in the form of

/I and error or noerror.

1

/IPre: The device has been programmed.
/IPost: Return error:

I error = NOERROR - device verified correctly

I error = ERROR - device not verify
[[+++++++++++++++H
int

Digital Function Processor User’s Guide-5th Ed. 6-25

Custom Example — Parallel Flash in Free Air

verify_memory(void)//datafile verification

{
long addr;

unsigned char data_byte,
expected_data;

outpw(DATA_DIR,OUTPUT);// Port A output
outpw(DATA_DIR,OUTPUT);// Port A output
setCount(0,0x00,0x0000);// Read command sequence
write_byte (OXFF);

outpw(DATA_DIR,INPUT);// Port A input
setCount(0,0,0); //card 0, addr high, addr low, starting address

// *% *kkhkkkhkkkkkkhkkhkk *kkkkkkkhkk *%

I Data Compare routine
// *% *kkkkkkkkkkkhkhkkkkkkkx *kkkkkkkkkhk *%
enable_read_byte ();
rewind (datafile[0]);// Return to the begining of data file
for (addr = O; addr < last_address; addr++) //address count
{ read_datafile(datafile[0], &expected_data); //Read datafile
data_byte = read_byte_only (); // Read Memory
if (data_byte != expected_data)//Compare datafile with memory
{
[lprintf("Address %IX not correct.”,addr);
[lprintf(" Read = %2X. Expected = %2X.\n",data_byte,expected_data);
disable_read_byte ();
return(ERROR);

}
outp(INC_ADDR, 0); //increment address

}
disable_read_byte ();

return(NOERROR);
}

[[++++++++++ turn_on_VPP function ++++++++++
/[Function: Turns on the VPP to 12V.
1
/IPre: None.
/[Post: VPP =12V.
[[+++++++++++++++H
void
turn_on_VPP(void)
{
/* Set Vpp to 12V */
setVpp (1,240);//set the voltage for 12 V (.05 * 240=12)
selVpp (1,0N);//turn Vpp ON
delay (50);

}

[[++++++++++ reset_command function ++++++++++
/[Function: 1. Changes the Port A direction to output.

6-26 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

1 2. Writes the reset command 2 times.

1 Reset leaves the device in read mode and
I safely aborts any operation.

1

/IPre: None.

/IPost: device is reset, Port A output.
[[+++++++++++++++H
void
reset_command(void)
{

outpw(DATA_DIR,OUTPUT);// Port A output

write_byte (OXFF); // Reset Command

write_byte (OXFF); // Reset Command

}

[[+++++++++++++++H
void
write_byte(unsigned char data)
{
outp(CNTL_BUS,CE_L | OE_H | WE_L); //address latched
I (write enable goes low)
outp(DATA_BUS,data);// Data
outp(CNTL_BUS,CE_L | OE_H | WE_H); //data latched enable high
I (write enable goes high)
return;

}

/] +++++++++++++++++
void
enable_read_byte(void)
{
outp(CNTL_BUS,CE_L | OE_L | WE_H);//enable read
return;

}

//+++
void
disable_read_byte(void)
{
outp(CNTL_BUS,CE_L | OE_H | WE_H);//disable read
return;

}

[l +++++++++++++H+H
unsigned char
read_byte only(void)

{
int data_byte;

data_byte = inp(DATA_BUS);//read data byte
return ((unsigned char)data_byte);

}

/] +++++++++++++++HHH

Digital Function Processor User’s Guide-5th Ed. 6-27

Custom Example — Parallel Flash in Free Air

unsigned char
read_byte(void)
{

int data_byte;

outp(CNTL_BUS,CE_L | OE_L | WE_H);//enable read
data_byte = inp(DATA_BUS);//read data byte
outp(CNTL_BUS,CE_L | OE_H | WE_H);//disable read
return ((unsigned char)data_byte);

}

[[+++++++++++ monitor function +++++++++++++++++
/IFunction: Displays the contents of DUT memory, 16 addresses

1 at a time, on the DFP terminal.
/I The user enters enters an address 0 (zero) to
I highest DUT address via the DFP keyboard.

/I The address are in hex -- example: 1c000
/I The contents of 16 addresses of DUT memory will be displayed,

I starting with the entered address.

I example -- user enters: 300

I the contents of address 300 hex (0x300)
I is the first data displayed, followed by

1 the contents of the next 15 addresses.

/I This is an extremely simple monitor.
/I Error tolerance is high, and error handling is therefore nil.
/I User cannot backspace. If he errs in typing the address -

I just hit return, or the space bar, and try again.
/I Entering an X' (exit) or 'Q" (quit) will terminate

1 the function.

/I As long as no 'X' or 'Q" are recieved, the user may

I continue to enter addresses to display the

I Dut memory contents.

1
/IPre:Ptprog.exe is started from the command line
/I with the starting argument -km or -pm.
/I (see get_args function.)
/[Post: The data contents of 16 DUT address locations are
/I displayed, starting with the user input address.
/] +++++++++++++++H++H
void
monitor(void)
{
unsigned char t;// misc counting variable
unsigned char byte;// location to store data
unsigned long adr;// the "address" part of the query to DUT
int count;// counts the bytes returned from DUT
char cmd[80];// keyboard input string
char done = 0;// a loop control item
char *endptr;// pointer to end string for strtoul function

selVpp (1,0FF);// Disable Vpp

delay (50);
outpw(DATA_DIR,INPUT);// Port A input

6-28 Digital Function Processor User’s Guide-5th Ed.

PTPROG.C File

while ('done)

{
printf(\M\aDUT Monitor. Enter X to quit.\n");
printf("->"); // prompt:
scanf("%s",cmd);

/I Convert input string to upper case.
for (count = 0; count < 6 ; count++)
cmd[count] = (char)toupper(cmd[count));

/I These are the exit criteria: x, X, g, or Q.
if ((cmd[0] == "X) || (cmd[0] == "Q"))
{

done = 1;

printf("\aExiting monitor\n™);

break;

}

/lconvert ascii string into unsigned long (hex= base 16)
adr = strtoul(cmd, &endptr, 16);
printf("adr: %05.5I1X\n",adr); // verify address.

/l read 16 bytes

setCount(0,(int)((adr >> 16) & OXFF),(int)(adr & OXFFFF));

for (count = 0 ; count < 16 ; count++)

{
/I get one byte per pass thru this loop
byte=read_byte();
outp(INC_ADDR, 0);
printf("%02.2X ",byte);

}

} /I end of while !done
} /1 end of Monitor

[[++++++++++ cleanup function ++++++++++++++

/[Function: Release the DR2P cards from

/I DFP control, close all files+ handles.

1

/IPre:Program is about to exit (return).

/[Post: DFP releases DR2P control, all

/I files + handles closed.

1

[[+++++++++++++++

void

cleanup(void)

{
releaseDR(0);// Disable PrompTest - card O
releaseDR(1);// Disable PrompTest - card 1
close(handle);// Close com port handle
fcloseall();// Close any open files
return;

}

Digital Function Processor User’s Guide-5th Ed.

6-29

Custom Example — Parallel Flash in Free Air

[[++++++++++ process message function ++++++++++++++
/IFunction: print failure/error message
1 to both DFP and 18xx screen
1
/IPre:Receives msg buffer with string.
/IPost: Prints message to DFP screen.
/I Sends message to 18xx to printed to 18xx screen.
1
[[++++++++++++H++H
void
print_Message(char *msg)
{
printf("%s",msgq); //print to DFP screen
send18xxMsg(handle,DFP_18XX_MSG,msg); //send to 18xx DigFuncProc
/lworksheet
return;

}

6-30 Digital Function Processor User’s Guide-5th Ed.

PT2.H Listing 7/

A listing of the contents of the PT2.H file appears on the following
pages.

PT2.H Listing

/*
Pt2.h for DFP

Digital Function Processor system Copyright (C) 1993,1994 Teradyne Inc.

Description-

Pt2.h header file for DFP

*/

#define VERSION ~ “BO_1_1_46262"

#define PTPROG"PTPROG”

#define MAX_COM_SIZ600
#define MAX_L_REC 16
#define |_REC_SIZ128
#define D_REC_SIZ128
#define MAX_FIELD 64
#define MAX_REC_SIZ128
#define CFG_SIZ 60

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

#ifndef ERROR
#define ERROR (-1)
#endif

#ifndef NOERROR
#define NOERROR 0
#endif

#define DONT_SAV_CRO
#define SAV_CR1

#define TIMEOUTERR (-2)
#define ESC 27
#define EVER ;;

#define MS_PER_TICK 55

#ifdef tolower
#undef tolower
#endif

#ifdef toupper
#undef toupper
#endif

#ifdef inp
#undef inp
#endif

#ifdef inpw
#undef inpw
#endif

#ifdef outp
#undef outp

7-2

Digital Function Processor User’s Guide, 5th Ed.

PT2.H Listing

#endif

#ifdef outpw
#undef outpw
#endif

/I Used by routines: initDirPath(), SaveDirPath() and restoreDirPath().
/I Note: This structure must be initailized by initDirPath() before it is used!
struct dirPath
{
int drive; /I drive number: 1=A,2=B,3=C ...
char path[_MAX_DIR];// a directory path in ‘drive’

1* CCC defines */

#define OFF 0
#define ON 1

#define DOWN 0
#define UP 1

/* Card modes */
#define PARALLEL O
#define SERIAL 1
#defineADDRESS 2
#defineDATA 3

/* Card Addresses */
#define CARDO 0x0380
#define CARD1 0x0388
#define CARD2 0x0390
#define CARD3 0x0398
#define CARD4 0x03A0

/* Block O - Address Counter */
#define ADD_RO 0x0000
#define ADD_R1 0x0002
#define ADD_R2 0x0004
#define ADD_INC 0x0006
/* Block 1 - Port Control */
#define PC_CNTL 0x1000
#define PAB_CNTL 0x1002
#define PA_HSHK 0x1004
#define PB_HSHK 0x1006
/* Block 2 - Gate Array Control */
#define GA_INST 0x2000
#define GA_ENAB 0x2002
#define GA_DATA 0x2004
#define GA_GRAY 0x2006
/* Block 3 - Port Data */
#define PA_DATA 0x3000
#define PB_DATA 0x3002
#define PC_DATA 0x3004
#define PAB_DATA 0x3006
/*Block 4 - CTC */
#define CTC_CNTO 0x4000

Digital Function Processor User’'s Guide, 5th Ed. 7-3

PT2.H Listing

#define CTC_CNT2 0x4002
#define CTC_CNT1 0x4004
#define CTC_MODE 0x4006

/* Block 5 - SIO */

#define SIO_BCOM 0x5000
#define SIO_BDAT 0x5002
#define SIO_ACOM 0x5004
#define SIO_ADAT 0x5006

#define STATUS

/* Block 6 - Misc */
0x6000

#define RST 0x6002
#define VPP 0x6004

#define MISC ~ 0x6006
/* Block 7 - Timer Trigger */
#define TRG_0 0x7000
#define TRG_1 0x7002
#define TRG_2 0x7004
#define PA 0 [* Port A */
#define PB 1 /* Port B */
#define PAB 2 /* Port A and B combined 16-bit port */
[* Driver Receiver defines */
#ifdef SET
#undef SET
#endif

#define SET Ox1
#define CLR 0x0

#define V_REED
#define D_REED
#define E_REED
#define F_REED
#define G_REED

/* Relays */
0x360
0x8
OxA
oxC
OxE

#define MAST_ED 0x120
#define MAST_FD 0x128
#define MAST_GD 0x220
#define MAST_ES 0x122
#define MAST_FS 0x12A
#define MAST_GS 0x222
#define MAST_EBR 0x228
#define MAST_FBR 0x22A
#define MAST_GBR 0x22C
#define MAST_DED 0x124
#define MAST_DFD 0x12C
#define MAST_DGD 0x224
#define MAST_DES 0x126
#define MAST_DFS 0x12E
#define MAST_DGS 0x226

#define NODO

7-4

/* Node addresses */
0x0020

Digital Function Processor User’s Guide, 5th Ed.

PT2.H Listing

#define NOD1

#define NOD2

#define NOD3

#define NOD4

#define NOD5

#define NODG6

#define NOD7

#define NOD8

#define NOD9

#define NOD10
#define NOD11
#define NOD12
#define NOD13
#define NOD14
#define NOD15
#define NOD16
#define NOD17
#define NOD18
#define NOD19
#define NOD20
#define NOD21
#define NOD22
#define NOD23
#define NOD24
#define NOD25
#define NOD26
#define NOD27
#define NOD28
#define NOD29
#define NOD30
#define NOD31

async

0x0060
0x00A0
O0x00EQ
0x1020
0x1060
0x10A0
0x10EO
0x2020
0x2060
0x20A0
0x20EO
0x3020
0x3060
0x30A0
0x30EO
0x4020
0x4060
0x40A0
0x40EO
0x5020
0x5060
0x50A0
Ox50EO0
0x6020
0x6060
0x60A0
0x60EO
0x7020
0x7060
0x70A0
0x70EO

#define NOCHANGE-1

#define BAUD110
#define BAUD150
#define BAUD300
#define BAUD600
#define BAUD1200
#define BAUD2400
#define BAUD4800
#define BAUD9600
#define BAUD19200
#define BAUD38400

WN PO
©oNou A

#define BAUD57600 1

#define BAUD115200

[*=====Parities

0

11

#define PARITY_NONE O
#define PARITY_ODD
#define PARITY_EVEN
#define PARITY_SODD
#define PARITY_SEVEN

#define LENGTH_5 0

1

2
3
4

/* 110 baud */

/* 150 baud */

/* 300 baud */

/* 600 baud */

/* 1200 baud */

[* 2400 baud */

/* 4800 baud */

/¥ 9600 baud */
/* 19200 baud */
/* 38400 baud */
/* 57600 baud */

[* 115.2 kbaud */

*/

/* No parity */
/* ODD parity */
[* Even parity */

[* Sticky ODD parity */
[* Sticky Even parity */

*/

* 5 bits */

Digital Function Processor User’s Guide, 5th Ed.

7-5

PT2.H Listing

#define LENGTH_6 1 /* 6 bits */
#define LENGTH_7 2 [* 7 bits */
#define LENGTH_8 3 [* 8 bits */

[*=====Stobits */
#define STOPBIT 1 0 /* 1 Stop bit */
#define STOPBIT_2 1 /* 2 Stop bit */

[*=====PROTOCOL */

#define PROT_NONE 0 /* No X protocol/Hardware protocol */

#define PROT_XRCV 1 /* X protocol on reception/Hardware protocol */
#define PROT_XXMT 2 /* X protocol on xmission/Hardware protocol */
#define PROT_XALL 3 [* X protcol on XMIT&RCV/Hardware protocol */
#define PROT_HNONE 4 /* No X protocol/No Hardware protocol */
#define PROT_HXRCV 5 /* X protocol on reception/No hardware prtocl */
#define PROT_HXXMT 6 /* X protocol on xmission/No hardware protocol*/
#define PROT_HXALL 7 /*X protocol on XMIT&RCV/No hardware protocol*/

#define INPUT_FLUSHO
#define OUTPUT_FLUSH1
#define I0_FLUSH2

struct port_status

{
unsigned shortBaud;// according to the BAUD defines
unsigned shortParity;// according to the Parity defines
unsigned shortLenght;// according to the Length defines
unsigned shortStopBits;// According to the Stop bit defines
unsigned shortProtocol;// according to the Protocol defines
unsigned shortinBufLen;// Input buffer lenght
unsigned shortOutBufLen;// Output buffer lenght
unsigned shortinBufCnt;// number of characters in the input
unsigned shortOutBufCnt;// # of charaters in the outbut buffer
unsigned charlnWait;// block time for input in 1/18 sec
unsigned charOutWait;// block time for output in 1/18 sec
unsigned charModemStatReg;
unsigned charLineStatReg;

I* Slave error codes */

#define DATE_SET 20 // Date and time set successfully
#define P_DONE 21 /I Ptprog finished

#define TERMINATE 22 /I Slave program terminating
#define SLAVE_OK 23 [/ Slave acknowledge

#define TIME_ERROR 24 |l Error setting time

#define DATE_ERROR 25 /I Error setting date

#define XLATE_ERROR 26 [/ Error starting xlate program

#define PTPROG_ERROR 27 [l Error starting ptprog program

#define INVALID_COMMAND 28 // Invalid command recieved

#define INVALID_DRIVE 29 /I Invalid drive specified in Job path

#define INVALID_VERSION 30 // Unable to create module directory
#define INVALID_LRECORD 31 //Valid records are 1 through MAX_L REC
#define DSZ_ERROR 32 // Error starting zmodem

#define INVALID_JOBPATH 33 // Invalid job path specified

I* Pcom error codes */

7-6 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

#define PCOM_ARG_ERR 40 /I Wrong number of arguments to pcom
#define PCOM_PRT_ERR 41 |/ Error opening serial port

#define PCOM_TIMEOUT 42 |/ Serial port timeout

#define PCOM_RD_ERR 43 [/ Serial port read error

#define PCOM_CFG_ERR 44 /[Unable to find pcom.cfg file

I* Ptver error codes */

#define PVER_DIRPATH_ERR 58 // Internal error in a dirPath routine
#define PVER_NO_HOOK 59 // Failed to hook to pcio

#define PVER_ARG_ERR 60 // Invalid comport designation
#define PVER_ARGC_ERR 61 // Wrong number of arguments
#define PVER_PRT_ERR 62 // Error opening com port

#define PVER_VER_ERR 63 // Slave and Ptver software version mismatch
#define PVER_TIMEOUT 64 /I Serial port timeout

#define INVALID_18XX_DRIVE 65 // Drive nonexistant on DFP
#define INVALID_18XX_PATH 66 // Path nonexistant on DFP

#define REBOOT_PT2_ERR 67 // Unable to start Ptboot

#define CFG_ERROR 68 // Unable to create pcom.cfg

#define CFG_MISMATCH 70 /I pt2.cfg differs from pt2.ini file

[* Ptprog (DFP to 18xx) message codes */

#define DFP_18XX_MSG 73 /I Send a DFP msg to 18xx
#define DFP_18XX_ERR_MSG 74 /I Send a DFP error msg to 18xx, to be
/I displayed on the 18xx screen in a red box.

[* Ptprog error codes */

#define PT_CFG_ERROR 77 /I Configuration error

#define ALGORITHM_ERROR 78 // Multiple algorithms declared in pt2.ini file
#define INI_FIELD _ERROR 79 // Not enough fields in pt2.ini file

#define PTPROG_PRT_ERROR 80 // Error opening com port

#define PTPROG_PARAM_ERROR 81 // Error setting port parameters
#define PTPROG_ALIVE 82 // Ptprog is working

#define PASS 83 /I Device(s) passed programming

#define FAIL 84 |/ Device(s) failed programming

#define FOPEN_ERROR 85 /I Error opening an .img file

#define FREAD_ERROR 86 /I Error reading an .img file

#define INIl_ERROR 87 [/ Error reading or opening .ini file

#define WIDTH_ERROR 88 // Bus position larger than allowed
#define DEV_NOT_FOUND 89 /I Programming algorithm does not exist

1* Xlate error codes */

#define XLATE_DONE 90 // Translate complete

#define XLATE_ALIVE 91 // Xlate working

#define INIFILE_ERROR 92 /I Error opening pt2.ini file

#define IMGFILE_ERROR 93 // Error opening .img file

#define SFILE_ERROR 94 /I Error opening S-record file
#define FIELD_ERROR 95 // Error in number of fields in pt2.ini
#define CHKSUM_ERROR 96 // Error in S-record checksum
#define DEVICE_FIL_ERROR 97 // Error opening device.dat file
#define DEVICE_ERROR 98 // Device not found in device.dat file
#define INVALID_RECORD 99 // Unknown record type

#define ADDRESS _ERROR 100 // S-record too large for device

I* Algorithm error codes */

Digital Function Processor User’'s Guide, 5th Ed. 7-7

PT2.H Listing

#define ALG_PRT_ERROR 110 // Error opening com port

#define ALG_PARAM_ERROR 111 // Error setting port parameters

#define ALG_CFG_ERROR 112 // Configuration error

#define ALG_INI_ERROR 113 /I Error opening/reading pt2.ini file

#define ALG_NOD_ERROR 114 // Node outside DFP configuration

#define ALG_STAT_ERROR 115 // Invalid state requested

#define ALG_MEM_ERROR 116 // Memory alocation error

#define ALG_WIDTH_ERR 117 // Number of devices does not match algorithm
#define NOD_CONFLICT 118 // Node already used

#define INIT_ERROR 119 // CCC not responding
[* Global Variables */
extern int nodA[32]; /* Node addresses */

extern int ca[5];/* Card addresses */
extern int miscReg[5];/* Misc reg image */

int

write_port (int fd, char *port_st);
/*
* Procedure: write_port

*

* Function: String is written to serial port fd
*

* Parameters:

* fd - int - serial port file descriptor
port_st - *char - pointer to string

Return Values:
ERROR, TIMEOUTERR, NOERROR - if the port was written
successfully

Discussion:
if the port cannot be written to return ERROR
if the port times out return TIMEOUTERR
the status of the port is read
if the buffer is not full characters are written
until a terminating null or
if the string is empty
return NOERROR

Imports modified:
NONE

%k k% % % % % % X X X X X X X

*
~

int
read_port (int fd, char *port_st, int wait);

7-8 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*

* Procedure: read_port

*

* Function: Serial port is read until Line Feed is encountered.
* Note: Carriage Returns are not saved in port_st][].
*

* Parameters:

fd - int - serial port file descriptor

port_st - *char - pointer to string to be modified

wait - int - time in seconds to wait for string

Return Values:
ESC - ESC was pressed
ERROR - read() returned -1: bad file handle
TIMEOUTERR- have not received CR-LF within
‘wait’ seconds
NOERROR - no errors, port was read successfully

Discussion:
if the port cannot be read return ERROR
if wait = 0 then wait forever else wait specified
seconds for string then return TIMEOUTERR
if the port times out return TIMEOUTERR
the status of the port is read
if there are characters in the buffer the port is read
until a terminating line feed or
if the buffer is empty an empty string is returned
return NOERROR

Imports modified:
port_st

L T S T T T T T R N R SR T B B

*
~

int
really_read_port (int fd, char *port_st, int wait, int savCR);

/*
* Procedure:really _read_port

*

* Function:Same as read_port() except Carriage Returns can be
* are saved in port_st[].

*

* Parameters:fd- same as in read_port()

* port_st - same as in read_port()

* wait- same as in read_port()

* savCR - setto SAV_CR if you want save carriage

* returns, set to DONT_SAV_CR if you do not
* want carriage returns.

*/

int
isinBufferEmpty(int fd);

Digital Function Processor User’'s Guide, 5th Ed. 7-9

PT2.H Listing

/*

* Procedure: isInBufferEmpty

*

* Function: check to see if the serial port input buffer has

* character(s) to be read

*

* Parameters:

* fd - int - serial port file descriptor

*

* Return Values:

* ERROR, FALSE, TRUE - if the buffer is empty

*

* Discussion:

the status of the port is read
if there are characters in the buffer return FALSE
else return TRUE

Imports modified:
NONE

* %k k k%

*/

int
crlf_port(int fd);

/*
* Procedure: crlf_port

*

* Function: Carriage return is written to serial port fd
*

* Parameters:
* fd - int - serial port file descriptor

*

* Return Values:

* ERROR, TIMEOUTERR, NOERROR - if the port was written
* successfully

*

* Discussion:

* if the port cannot be written to return ERROR

* if the port times out return TIMEOUTERR

* the status of the port is read

* if the buffer is not full carriage return is written
* return NOERROR

*

* Imports modified:

*

NONE

*
~

int
md_cd(char *path);

7-10 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: md_cd

*

* Function: creates and changes to path directory

*

* Parameters:

* *path - char - pathname

*

* Return Values:

ERROR, NOERROR - if directory successfully created
and changed to.

Discussion:
if unable to create or change to directory return ERROR
else return NOERROR

L T T I T I

Imports modified:
NONE

*
~

int
get_dir(int fn, char *outstr, char *instr);

/*

* Procedure: get_dir

*

* Function: extracts directory name specified
* by field number from path

*

* Parameters:

fn - int - field number

*outstr - char - returned directory
*instr - char - path

Return Values:
ERROR, NOERROR - if valid directory name returned

Discussion:
if invalid directory name return ERROR
else return NOERROR

L T T O O . R T R I

Imports modified:
outstr

*
~

ifndef TURBO
unsigned long
delay(unsigned long ms);
endif

/*
* Procedure: delay

Digital Function Processor User’'s Guide, 5th Ed. 7-11

PT2.H Listing

void

*

* Function: delays for specified milliseconds

*

* Parameters:

* ms - int - number of milliseconds
*

* Return Values:

* NONE
* Discussion:
* delays for period specified by ms

*

* Imports modified:
* NONE
*/

sync(int fd);

char **

/*
* Procedure: sync

*

* Function: syncronizes DFP and 18xx computers

*

* Parameters:

* fd - int - file descriptor

*

* Return Values:

* NONE

*

* Discussion:

Ports trade characters (H) until both sides have
seen 25 characters. A terminating character is
then sent. The ports are then read until the
terminating character (1) is found.

Imports modified:
NONE

L

*/

breakUp(char *str);

7-12

Digital Function Processor User’s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: breakUp

*

* Function: returns array of pointers
*
* Parameters:
* *instr - char - string of arguments to seperate
*
* Return Values:
char **Array of null terminated strings.
Null pointer signifies end of array.

Discussion: breakUp takes a string of arguments seperated by a
space and returns an array of pointers to null
terminated strings that contain the arguments. The
end of the argument list is signified by a null pointer.

L S T T T I R

Imports modified:
NONE

*
~

unsigned int
hex(char input);

void

/*
* Procedure: hex

*

* Function: returns integer value of ascii hex character
*

* Parameters:

* input - char - character to convert

*

* Return Values:

* int Converted value of character.

*

* Discussion: Hex takes an ascii hex character and converts to
* the integer value.

*

* Imports modified:

* NONE

*/

keep_alive(int fd, int error);

Digital Function Processor User’s Guide, 5th Ed.

7-13

PT2.H Listing

/*
* Procedure: keep_alive

*

* Function: sends ascii string representing an integer to com port
*

* Parameters:

* fd - int - file descriptor

error - int - integer to send

Return Values:
NONE

Discussion: Converts error to ASCII string and sends to com port
specified by fd.

E I S

Imports modified:
NONE

*
~

int
get_field(int fn, char *outstr, char *instr);

/*
* Procedure: get_field

*

* Function: returns requested field from input string
*

* Parameters:

* fn - int - field number

*outstr - char - output string

*instr - char - input string

Return Values:
ERROR, NOERROR - if valid field returned

Discussion: Returns a string (outstr) specified by field number (fn)
from an input string (instr) which consists of multiple
fields seperated by commas. First field is field 1.

Imports modified:
NONE

L I S T

*
~

/************************** CCC prototypes *kkkkkkkhhkhhhhkhkkkkkx /

7-14 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/* S10 Functions */

void
sioComWr(int card, int port, int reg, int data);

/*
* Procedure: sioComWr

*

* Function: Write to SIO register
*

* Parameters:

* card - int - CCC number
port - int - port address
reg - int - register number
data - int - data to write

Return Values:
NONE

Discussion:
This routine writes data to the SIO write
register specified by reg. Port is defined as
SIO_ACOM or SIO_BCOM.

L . R T T T T R B

Imports modified:
NONE

*
~

int
sioComRd(int card, int port, int reg);

/*
* Procedure: sioComRd

*

* Function: Read SIO register

*

* Parameters:

* card - int - CCC number
port - int - port address
reg - int - register number

Return Values:
int register data

Discussion:
This routine returns the contents of the SIO read
register specified by reg. Port is defined as
SIO_ACOM or SIO_BCOM.

L T T N N I I .

Imports modified:
NONE

*
~

void
sioWr(int port, unsigned char ch);

Digital Function Processor User’'s Guide, 5th Ed. 7-15

PT2.H Listing

/*
* Procedure: sioWr

*

* Function: Transmit character to the DUT

*

* Parameters:

* port - int - port address

ch - unsigned char - character to send

Return Values:
NONE

Discussion:
This routine transmits a character out one of the
CCC serial ports. Port address is the combined value
of the CCC address and either SIO_ADAT or SIO_BDAT.

Imports modified:
NONE

L I S R T T T B N

*
~

char
sioRd(int port);

/*
* Procedure: sioRd

*

* Function: Return a character from the DUT.

*

* Parameters:

* port - int - port address

*

* Return Values:

* int character read

*

* Discussion:

This routine receives a character from one of the
CCC serial ports. The calling program must test
sioRdrf(). This function does not, for fear of getting
trapped forever by a dead DUT. Calling this function
will clear rdrf. Port address is the combined value

of the CCC address and either SIO_ADAT or SIO_BDAT.

Imports modified:
NONE

L S I

*
~

int
sioRdrf(int port);

7-16 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: sioRdrf

*

* Function: Test receiver data ready flag

*

* Parameters:

* port - int - port address

*

* Return Values:

* int state of rdrf bit

*

* Discussion:

This routine returns the state of the receiver data
ready flag. Return 1 if character is available O if
not. Port address is the combined value of the CCC
address and either SIO_ADAT or SIO_BDAT.

Imports modified:
NONE

L

*/

/7\-************************ I n Itl al | z atl on F un Ctl ons *************************/

void

pt2init(void);

int

/*
* Procedure: pt2init
*

* Function: Initializes card and node arrays

*

* Parameters:

* NONE

*

* Return Values:

* NONE

*

* Discussion: pt2init initializes the ca[] (card address) and
* nodA[] (node address) arrays to the values defined
* in the pt2.h file.

*

* Imports modified:

* NONE

*/

initCard(int card);

Digital Function Processor User’'s Guide, 5th Ed. 7-17

PT2.H Listing

/*
* Procedure: initCard

*

* Function: initializes channel control card

*

* Parameters:

* card - int - CCC number

*

* Return Values:

* NOERROR, ERROR if card doesn't respond
*

* Discussion: Performs reset on CCC. Registers cleared, VPP off,
* timers set to mode 1, SIO channels reset.

*

* Imports modified:

* NONE

*

void
setMode(int card, int mode);

/*
* Procedure: setMode

*

* Function: initializes channel control card

*

* Parameters:
* card - int - CCC number

* mode - int - mode to set CCC card to

*

* Return Values:

* NONE

*

* Discussion: Sets specified card to one of four modes.

* SERIAL - port C will have serial functions.

* PARALLEL - port C will have handshake functions.
* DATA - port C will have data io functions.

* ADDRESS - port C will have address generator functions.
*

* Imports modified:

* miscReg]card]

*

void
ptEnable(int card, int state);

7-18 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

void

/*
* Procedure: ptEnable

*

* Function: enables channel control card

*

* Parameters:

* card - int - CCC number

state - int - state to set CCC card to

Return Values:
NONE

Discussion: Enables/disables Channel Control Card/DR2p card
If state is ON then channel card has control of
driver receiver card.
If state is OFF then driver receiver card is back
under 18xx control.

L T T R I I .

Imports modified:
miscReg]card]

*
~

rstDR(int card);

void

/*
* Procedure: rstDR
*

* Function: resets driver receiver card

*

* Parameters:

* card - int - CCC number attached to DR2p
*

* Return Values:

NONE

Discussion: Resets driver receiver card. Resets all gate array
latches clears all relays (no disables no vreeds),
clears all memory (no disables), clears last digital
driver state, and clears eight direct connect relays.
CCC card must be enabled.

Imports modified:
NONE

L S S T T R R

*
~

releaseDR(int card);

Digital Function Processor User’s Guide, 5th Ed.

7-19

PT2.H Listing

/*
* Procedure: releaseDR

*

* Function: clears relays on driver receiver card

*

* Parameters:

* card - int - CCC number attached to DR2p

*

* Return Values:

* NONE

*

* Discussion: Clears all relays (no disables no vreeds), and clears
eight direct connect relays. CCC card does not have
to be enabled.

* % kX *

Imports modified:
NONE
*

/***************************** VP P Fu n Ctl ons *****************************/

void
setVpp(int card, int volts);

/*
* Procedure: setVpp

*

* Function: sets vpp voltage

*

* Parameters:

* card - int - CCC number
volts - int - voltage to set

Return Values:
NONE

Discussion: Programs the Vpp voltage for the Channel Control
card. Volts is in 50mv increments. 0-255 where
255 = 12.75 volts.

L S T T T T R

Imports modified:
NONE

*
~

void
selVpp(int card, int state);

7-20 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: selVpp

*

* Function: turns on/off vpp
*

* Parameters:
* card - int - CCC number

* state - int - state to set vpp
*
* Return Values:
* NONE
*
* Discussion: Turns on/off vpp voltage.
* If state is ON then vpp is on.
* If state is OFF then vpp is off.
*
* Imports modified:
* miscReg][card]
*/
int
measVpp(int card);
/*

* Procedure: measVpp

*

* Function: measure DUT vpp

*

* Parameters:

* card - int - CCC number

*

* Return Values:

* int Voltage measured in 50mv increments.
*

* Discussion: Measure DUT VPP by successive approximation A-D

*

* Imports modified:
* miscReg]card]
*

/*********************** Ad d ress COU nte r Fu n Ctl ons ***********************/

Digital Function Processor User’'s Guide, 5th Ed. 7-21

PT2.H Listing

void
setCountDir(int card, int dir);

/*
* Procedure: setCountDir
*

* Function: set direction of address counted

*

* Parameters:
* card - int - CCC number

* dir - int - direction
*

* Return Values:

* NONE

*

* Discussion: Set direction of address counter to either
* UP or DOWN.

*

* Imports modified:

* miscReg]card]

*/

void
incCount(int card);

/*
* Procedure: incCount

*

* Function: increment address counter
*

* Parameters:

* card - int - CCC number

*

* Return Values:

* NONE

*

* Discussion: Increment/decrement address counter by 1.

*

* Imports modified:
* NONE
*

void
setCount(int card, int addh, int addl);

7-22 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: setCount

*

* Function: set address counter
*

* Parameters:
* card - int - CCC number

* addl - int - least significant 16 bits
* addh - int - most significant 8 bits
*

* Return Values:

* NONE

*

* Discussion: Set 24 bit address counter to combined value
* of addh and addl.

*

* Imports modified:

* NONE

*/

void
getCount(int card, int *addh, int *addl);

/*
* Procedure: getCount

*

* Function: Get current address counter

*

* Parameters:

* card -int- CCC number

*addl - int - least significant 16 bits
*addh - int - most significant 8 bits

Return Values:
NONE

Discussion: Get current value of 24 bit address counter.
Imports modified:

*addl
*addh

EE I S

*
~

/************************ Para”el Port FunCtlonS *% *kkkkkkkkkk *% /

Digital Function Processor User’'s Guide, 5th Ed. 7-23

PT2.H Listing

int
getPortData(int card, int port);

/*
* Procedure: getPortData
*

* Function: Read data from port

*

* Parameters:
* card - int - CCC number

* port - int - port to read from

*

* Return Values:

* int data read from port

*

* Discussion:

* The port functions all work with a port argument,

* which is defined as follows:-

*

* PA =Port A 8 bits DO-7.

* PB =Port B 8 bits D8-15.

* PAB = Port A+B 16 bits DO-15.

*

* The ports must have been initialised into the correct
* mode prior to these commands using the setMode()
* function.

*

* Imports modified:

* NONE

*

int
readStatus(int card);

/*
* Procedure: readStatus

*

* Function: Read status register

*

* Parameters:

* card - int - CCC number
*

* Return Values:

* int contents of the status register

*

* Discussion:

* returns the contents of the CCC status register

*

* Imports modified:
* NONE
*/

void
setPortData(int card, int port, int data);

7-24

Digital Function Processor User’s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure: setPortData

*

* Function: Write data to port
*

* Parameters:
* card - int - CCC number

port - int - port to write to
data - int - data to write
Return Values:
NONE
Discussion:

The port functions all work with a port argument,
which is defined as follows:-

PA = Port A 8 bits DO-7.
PB = Port B 8 bits D8-15.
PAB = Port A+B 16 bits D0-15.

The ports must have been initialised into the correct
mode prior to these commands using the setMode()
function.

L S N T R S I T T R

Imports modified:
NONE

*
~

/***************************** async fUﬂCtIOﬂS *****************************/

int
serial_get(int handle, struct port_status *P_stat);

/*
* Procedure:serial_get

*

* Function:Function to get communication paramters

*

* Inputs: handle: The file handle returned from an open.

* P_stat: The address of a structure port_status.
*

* Return Value:False if operantion could not be provided,

* otherwise true.

*/

int
serial_set (int handle, int baud, int par, int len, int stp, int proto, int

Digital Function Processor User’'s Guide, 5th Ed. 7-25

PT2.H Listing

i_wait, int 0_wait);

/*
* Procedure:serial_set
*

* Function:Function to set communication paramters

*

* Inputs: handle: The file handle returned from an open.

baud : The baud rate according to the BAUDXxx
manifest defines

par: The parity according to the PARITYxxx
defines.

len: The byte lenght according to the
LENGHTxxxx defines.

stp: The number of stoppbits according to
the STOPPBIT def.

proto:The type of handshake according to the

PROTOxxx def.

i_wait:The input timeout in milli sec. up to
14 seconds.

0_wait:The output timeout in milli sec. up to
14 seconds.

Return Value:False if operantion could not be provided,
otherwise true.

Note: All of the above arguments, with exception of
‘handle’ can have the define NOCHANGE if only
a partial setup is required. The i_wait is
the time a read() will be suspened for if there
is no input to the port. The o_wait is the
time is the time that is waited for space in
the output buffer to become availabale while
in write()

EE I S S R T T S S S T T R I I R R

*
~

int
serial_wait_tx_empty (int handle);

/*

* Procedure:serial_wait_tx_empty

*

* Function:Function to wait for the transmit buffer to
* empty out

*

* Inputs: handle: The file handle returned from an open.
*

* Return Value:False if operantion could not be provided,
* otherwise true.

*/

int
serial_flush_buff (int handle, int input_output);

7-26 Digital Function Processor User’'s Guide, 5th Ed.

PT2.H Listing

/*

* Procedure:serial_flush_buff

*

* Function:Function to trunctate the input- and/or

* output- buffers

*

* Inputs: handle: The file handle returned from an open.
* nput_output: one of the xxxxFLUSH defines
*

* Return Value:False if operantion could not be provided,
* otherwise true.

*

int
serial_DTR (int handle, int on_off);

/*
* Procedure:serial_ DTR

*

* Function:Function to manipulate the DTR line manually
*

* Inputs: handle: The file handle returned from an open.
* on_off: A 1 for on, 0O for off

*

* Return Value:False if operantion could not be provided,
* otherwise true.

*/

int
serial_RTS (int handle, int on_off);

/*
* Procedure:serial_RTS
*

* Function:Function to manipulate the RTS line manually

*

* Inputs: handle: The file handle returned from an open.
* on_off: A 1 for on, 0O for off

*

* Return Value:False if operantion could not be provided,

* otherwise true.

*

int
serial_send_break(int handle, int time);

/*
* Procedure:serial_send_break

*

* Function:Function to send a break signal

*

* Inputs: handle: The file handle returned from an open.

* time : The time in ms of the break condition
*

* Return Value:False if operantion could not be provided,

* otherwise true.

*/

/******************************** M |S c ********************************/

Digital Function Processor User’'s Guide, 5th Ed. 7-27

PT2.H Listing

int

chkESC(void);

int

/*
* Procedure:
*

* Function:

*

chkESC

* Parameters:

* NONE

*

* Return Values:

* FALSE, TRUE - if keyboard escape

*

* Discussion:

the keyboard is read
if escape entered return TRUE
else return FALSE

Imports modified:
NONE

* Ok Ok Ok k%

*/

send18xxMsg(int fd, int msgCode, char *string);

char *

/*
* Procedure:send18xxMsg
*

* Function:Send a string message (upto the size of
MAX_MSG_SZ characters) to the 18xx.

Inputs: fd

in pt2.h

L I S T T R R R

Imports modified:none
*

getDfpConfigFile(char *buf);

7-28

- the serial port file descriptor
msgCode - the message code number, as defined

string- the string to be sent

check to see if escape character entered at keyboard

NOTE: If ‘string’ is greater than MAX_MSG_SZ,
it is truncated to MAX_MSG_SZ.

Outputs: Returns the value returned by write_port(),
which is one of: ERROR, TIMEOUTERR, NOERROR.

Digital Function Processor User’s Guide, 5th Ed.

PT2.H Listing

/*
* Procedure:getDfpConfigFile

* Function:Creates the path to the dfp configuration file.
* This path is located in the current board
directory.

Inputs: buf - an empty string buffer of at least
_MAX_DIR + 1 characters.

Outputs: buf - contains the path to the dfp config
file

Returned Value:address of buf, if no errors
NULL, if errors

L I S R I T

Imports modified:none

*

* WARNING: This routine returns the correct path only

* for B.O or latter DFP software.
*/
char *
getBoardDir(char *buf);
/*
* Procedure:getBoardDir
*
* Function:Creates the path to the current board directory.
*
*Inputs: buf - a string buffer of at least
* _MAX_DIR + 1 characters.
*
* Qutputs: buf - contains the path of the current
* board dir.
*
* Returned Value:address of buf, if no errors
* NULL, if errors
*
* Imports modified:none
*
void

initDrivePath(struct dirPath *dpath);

/*
* Procedure:initDrivePath

*

* Function:Initializes the dirPath structure

*

* Inputs: dpath - a pointer to a dirPath struct
*

* OQutputs: dpath - initialize to a invalid path
*

* Returned Value:none
*/

int
saveDrivePath(struct dirPath *dpath);

Digital Function Processor User’'s Guide, 5th Ed. 7-29

PT2.H Listing

/*
* Procedure:savDrivePath

*

* Function:Save the Current Working Directory (CWD)

*

* Inputs: dpath - a pointer to a dirPath struct
* Qutputs: dpath - initializes dpath to the CWD

* Returned Value:ERROR- if getcwd() failed
* NOERROR

*

/

int

restoreDrivePath(struct dirPath *dpath);
/*
* Procedure:restoreDrivePath

*

* Function:Restores the saved path in ‘dpath’

*

*Inputs: dpath - a pointer to a dirPath struct
*

* Outputs: none
* Returned Value:ERROR- if chdir() or _chdrive() failed

* NOERROR
*/

7-30 Digital Function Processor User’'s Guide, 5th Ed.

1ISO9141 Option 8

Theory of Operationcccceeeennn. 8-2
Programmingcooeeeeeeeeeeeeiieeenennnnn. 8-3
System Capacity.........ceeevvveevveeeeeennnnns 8-4
Installation ... 8-4
Removaloooovviiii 8-4

The 1SO9141 option to the DFP responds to a customer request to
use bi-directional 1ISO9141 logic levels in communication between
the DUT and the DFP. The option kit contains a circuit board and
connecting cable. The circuit board takes up a slot in the DFP with
the connecting cable (a short length of 34-conductor ribbon)
providing the electrical connections between the CCC and the
1ISO9141 option circuit board. The addition of the 1ISO9141 option
to a CCC replaces the RS232 facilities normally present on the
CCC. The addition of the ISO9141 to one CCC does not disable or
change behavior of any other features on the CCC, and does not
affect other CCDs in the DFP. The CCC and DR2p were originally
designed with options of this nature in mind, so no modifications to
the CCC or DR2p are needed. The design emphasizes the following
three themes:

1 Utility

Two channels of ISO9141 communication are provided by one
option kit. This will permit the tester to communicate with two
DUT'’s at the same time, or to operate two sub-panels of a
multipanel DUT at once.

2 Simplicity
Programmer selects 1ISO9141 as he/she would have selected
RS232.

3 Minimum impact

RS232 is the only feature sacrificed on the CCC/DR2p pair. It can
be easily restored by removing the 1ISO9141 option and replacing
the slip-on jumpers that normally occupy positions on J2 of the
CCC. Each ISO9141 option occupies one card slot in the DFP
motherboard.

This document explains how the 1ISO9141 option works, how to
program it, how to install it and how to remove it.

Theory of Operation

Theory of Operation

The option contains two out-converters, two in-converters and
some jumper connections.

Figure 8.1 Block Diagram of ISO 9141 Option to Digital Function Processor

CCC J2 1SO 9141 Option Board J2 CcccC J4-J1 DR2p DR2p Regular 1S0O9141
Circuit PIN PIN Circuit Cable Circuitl Channel Signal Option Signal
I- """"""""""""""
AACK1 L AACK1
@ @ Channel 16 Channel 16
' . u26
1
BACK1 BACK1
23] e—"— — Channel 17 Channel 17
Us3 - :
1
TDAL ! L TDA1
[23] 18 Channel 20 Channel 20
[
i ' u29
TDBL = TDB1
[23] @7 — Channel 21 Channel 21
T
! 1
, 1
3 ISO9141A
. %ﬁj 5] Txes2a 1S09141A
|
1
1
1
RLIN In- : 7]
convert E 171} o0 @l Rx232A not used
I
! 1
1S09141B
' Out- 721
V32 : ue K [3l o0 711 Txeses 15091418
1
|
R2AN =4 / o
& o 3 [ral o0 B8] Rrxe3zs not used
' 1
|
ISO B+
@ @ o0 @ not used 1SO B+
' 1
|
-
1SOB+ \ Es] @ o 0O @l not used not used

'
i
* [z3[z4] - {56 Ju12[o1]22]27]28] - *

Vee +5V
Gnd Ov

The out-converters are potentially active all the time. They convert
high CMOS logic level signals (5 volts) to high (510 ohm pulled up
to B+) 1ISO9141 signals. The signals being converted originate in a
dual UART on the CCC. They pass through GAL U33 on the way,
emerging as signals TDA and TDB. Signal PCSL enables the
UART signals to drive these serial channels. The full equations for
this GAL can be found in the hardware section of the DFP User’s
Guide.

The B+ signal will normally be supplied from the DUT or DUT
power supply through the fixture interface. The option commits
one pin to this purpose, channel 29 of the associated DR2p. A
diode to the DFP 5-volt supply provides enough B+ voltage to
conduct a self test.

The in-converters, like the out-converters, are also active all the
time. The inbound ISO9141 signals are first converted to RS232
levels on the option card. The RS232-level signals are then
converted to 5-volt CMOS levels on the CCC by the MAX242 chip
U32. Finally they pass through GAL U33 on their way to the

8-2 Digital Function Processor User’s Guide-5th Ed.

Programming

CCD’s dual UART. U33 uses the “SMODE” signal to decide
which of two signal sources to connect to the UART. If SMODE is
low, U33 selects the 5-volt logic levels AACK and BACK, which
come directly from logic level pins in Group C of the DR2p. If
SMODE is high, U33 selects the outputs of U32, and therefore
selects the 1ISO9141 signals as input. For full logic equations in
GAL U33, see the DFP/PROMPTest Il User’'s Guide.

Programming

To enable serial transmission, program the PCSL bit to 1 via the
miscellaneous register. This is necessary for logic level
transmission via Group C pins on the DR2p as well as for ISO9141
transmission via Group D pins on the DR2p. In addition, for ttl,
program the SHDN* bit to 0, and for ISO9141 program the SHDN*
bit to 1 (disable/enable U32).

To receive 1ISO9141 signals through the Group D pins on the DR2p,
program SMODE to 1 via the miscellaneous register. To receive
logic level input signals through the Group C pins on the DR2p,
program SMODE to 0. Again, for ISO9141 the SHDN* bit must be
programed to 1.

Example -- TTL level - CHA

outp(ca[card]|0x6006,0x21); // misc reg:BO=1=serial mode (U33 CCC)
I B3=0=disable RS232 driver (U32-CCC)
I B4=0=Recieve-TTL mode (U33-CCC)
/ B5=1=DFP enable (to the DR2P via CCC)

outp(ca[card]|PC_CNTL,0x01); // Port C cntl-TXDA output, RXDA input
outp(ca[card]|PC_DATA,0x00); // Port C data-enable serial data mode (U73-DR2P)

outpw(calcard]|GA_INST,D_REED|nodA[position]|SET); // TXxDA (DR2P)
outpw(calcard]|GA_INST,D_REED|nodA[position+1]|SET); // RxDA (DR2P)

Example -- ISO level - CHA

outp(ca[card]|0x6006,0x39); /I misc reg: BO=1=serial mode (U33-CCC)
// B3=1=enable RS232 driver (U32-CCC)
// B4=1=Recieve-RS232 mode (U33-CCC)
// B5=1= DFP enable (to the DR2P via CCC)

outpw(ca[card]|PAB_CNTL,0xDDO00); // channel 25 aux relay (D_REED) closed for
I/ bi-directional CHA - TXDA/RXDA (DR2P),
// and channel 29 aux relay (D_REED) closed
/ to provide B+ from the DUT (DR2P)

Digital Function Processor User’s Guide-5th Ed. 8-3

System Capacity

System Capacity

Installation

Removal

8-4

The DFP has five card slots in all, and is intended to support up to
four CCCs. Therefore, A system with four CCCs supports one
1ISO9141 option card (slot limit); A system with three CCCs
supports two 1SO9141 option cards (slot limit); A system with two
CCCs supports two 1ISO9141 option cards (each option card needs a
CCCQC); A system with one CCC supports one 1ISO9141 option card
(cache option card needs a CCC).

Install both the CCC card and 1ISO9141 option board into free slots
in the DFP chassis. To install the ribbon-cable jumper from the
1ISO9141 board to the CCC card, first remove the slip-on jumpers
from header J2 on the CCC, then install the ribbon-cable jumper
from J2 on the CCC to J2 on the option card. Connect the cable
from the CCC to DR2p and test.

Remove the ribbon jumper from the CCC. Install slip-on jumpers
on J2 of the CCC to connect pins 1to 2, 3to 4, 17 to 18, 19 to 20,
2310 24, 25 to 26. Reinstall the CCC in the motherboard.

Digital Function Processor User’s Guide-5th Ed.

Maintenance 9

The preliminary information included in the paper version of this
manual be useful in performing product maintenance.

If you have further questions relating to the maintenance of the
Digital Function Processor, please feel free to call 1-800-457-8326
(1-800-HLP-TEAM).

Index

Numerics

28F010 6-1

28F020 6-1

320-node fixtures 1-6
68HCO05 microcontrollers 3-8
68HC11 3-7,4-1

68HC05 3-7

8253, 82C53 3-21, 3-50
85C30 3-7,3-22, 3-47

A

AACK 3-48, 3-49, 8-3

A-D circuitry 3-8, 3-23
address buses 3-7, 3-44
address counter 3-13
Address Decode PAL (U73) 3-35
address management 3-44
address settings 3-45
address, mode description 3-7
addresses on CCCs 3-11
ALPHAO 4-1

AND gate 3-33

ARDY 3-36, 3-40

arguments 2-9, 4-1
assemblers 2-27
ASYNC.SYS, description 2-18
asynchronous serial data 3-22
automatic updating 2-25

B
B+ signal 8-3
BACK 3-4, 3-49,] 8-3
backdriving 1-7
backplane data 3-18
backups 2-25
bay, custom for DFP unit 3-4
BIOS setup 3-22
bit definition 3-16
bit rate 1-4
block diagram, DR2p board 3-29
block numbers 3-11
descriptions 3-13
Board Address Settings 3-45
board locations 1-6
bootstraps 1-6
Borland Turbo C/C++ 1-3, 2-1, 2-19
BRDY 3-36, 3-40

C
C command 2-15
C compilers 1-3, 2-1, 2-19
Test Toolbox C library 2-1
Cable Pin Numbers 3-41
cables 1-4, 1-7, 3-1
80-pin 3-6, 3-34, 3-41
connecting DR2p to CCC 3-6
connecting PROMPTest Il to tester 3-5
pin signals 3-41
cages 3-4
capacitor test 2-15
card addresses, troubleshooting 3-45
CCCs (Channel Control Cards) 3-1, 2-20
Address Management 3-44
addresses 3-44
base address 3-11
delayed write strobe 3-46
DIP switch settings 3-44
jumper block 3-49
logic design 3-41
channel assignments 1-8
Channel Control Cards (CCCs)3-1, 2-20
Address Management 3-44
addresses 3-44
base address 3-11
delayed write strobe 3-46
DIP switch settings 3-44
jumper block 3-49
logic design 3-41
channel functionality 3-10
channel groups
port A 3-32
port B 3-32
port C 3-33
chassis 3-1
location in tester 3-4
clock-calendar 3-6
CMOS logic level signals 8-3
code modification 2-5
Com Parameters window 2-7
command interface 1-4, 3-1
compatibility of DFP with VP, THC 1-7
compilers 1-3
Component ID 2-6
concatenation 3-20
conditioner output voltage 3-4

Index

conduction paths 1-8
config.sys 2-18
configuration file 2-15
connector J4 3-41
121, 117 3-34
signals on 3-31
connectors 3-4
controls 3-4, 3-23
converter 3-4
counter/timers 3-21
crash, software 3-5
crosstalk 3-32
CTC, register description 3-21
custom application, using C programs 1-3, 2-1
custom applications 2-4, 2-27, 4-1, 5-1, 6-1
custom application serial boot 4-1
assembly source code 4-29
example, C program 4-3, 5-3, 6-3

D
D command (slave.exe) 2-13
damage to the tester 3-17
date and time 2-13
daughterboard, custom 3-31
DC voltages 3-4
define statements 3-13, 3-15, 3-17, 3-19, 3-20, 3-
23, 3-25, 3-27
delay system 3-46
DFP
Com port parameters 2-7
generating worksheet 2-7
overwriting files 2-8
PRGMVARS Communication channel
field 2-6
PRGMVARS Source Directory path 2-6
Result Text box 2-9
sending arguments to ptprog.exe 2-9
setting up in PRGMVARS 2-6
specifying Com port timeout from
worksheet 2-8
specifying source directory from
worksheet 2-8
updating DFP 2-8
DFP self-test 2-4
dfpcom.exe 2-22
dfpver.exe 2-21
diagnostics 2-4, 2-18, 2-26

Index-2

DigFuncProc Device Type 2-6
DigFuncProc testsheet 4-1, 5-1, 6-1
digiboard 2-18
digital stimulus 1-7
DIP switches 3-44
settings 3-45
DIRECT 3-31
directories 2-13
DFP software on 18XX systems 2-10
DFP system 2-11
directory contents, sending 2-13
directory summaries 2-10
disk drives 3-5
distortion of time 3-34
“don’t care” values 3-44
DOS 1-4
DOS commands 2-15
DOS hierarchy 2-17
DR2 1-4, 3-1, 3-28
DR2 resources 3-9
DR2p 1-4, 1-8, 3-1, 3-48
block diagram 3-29
boards 2-5, 3-28
block diagram 3-29
channel associations 3-9
features 1-7
functions 3-28
location in tester 3-28
schematics 3-28
pinout 1-8
preferred locations 1-6
slot populations 1-6
driver amplifiers 1-7
Driver Receiver 2 1-4
dsz.exe, description 2-16
dynamic output 3-16

E

edge fingers 3-41

edit mode 2-1

enable, high-going andlow-going 3-39
EPT lines 3-40

erasure 2-5

executing DOS commands 2-15
extension boards 2-18

Digital Function Processor User’s Guide-5th Ed.

Index

F
F command (slave.exe) 2-15, 2-19
fail.tmp, description 2-19, 2-20
failure flags 2-15
failure flag integer 2-19
fields, worksheet 2-8
files
async.sys 2-18
dsz.exe 2-16
fail.tmp 2-19, 2-20
format.dat 2-24
pt2.cfg 2-18
pt2.h 2-20
pt2.ini 2-23
pt2.lib 2-20
ptboot.exe 2-21
ptprog.exe 2-17
pttalk.exe 2-16
ptver.exe 2-21
slave.exe 2-12
values.dat 2-19
xlate.exe 2-15
zreceive.bat 2-17
files, updating between systems 2-25
fingers, plugging into motherboard 3-41
fixture node assignments 1-9
fixtures, small 1-6
flags 2-15
flash algorithms 3-21
flash in free air 1-1, 1-6, 1-9, 5-1, 6-1
channel assignments 1-8
flat ribbon cable 3-6
flipflops 3-49
handshaking 3-48
Floppy Disk Drives 3-5
format.dat, description 2-24
front panel 3-4
initCard function 3-24

G
GAL U33 8-3
gate array
input multiplexer 3-30
output multiplex 3-32
register description 3-18
GBUS 3-30, 3-36, 3-39
GBUSIN 3-36
generic channel assignments 1-8
Gray code 1-4
guarding
vector guards in DFP tests 2-6

Digital Function Processor User’s Guide-5th Ed.

H
handshaking 1-6, 3-34
channel assignments 1-8
EPTO-7 3-31
EPT8-15 3-31
features 3-40
flipflops 3-48
logic 3-17
node assignments 1-10
hardware 1-4
interconnections 1-5, 3-3
head cage 3-4
high-going enable 3-39
high-order channels 1-8
high-speed signals 3-40
Hitachi 85C30 3-7

|
I/0 Control PAL (U74) 3-38
I/O registers
address counter 3-13
CTC 3-21
gate array 3-18
miscellaneous controls 3-23
port control 3-14
SIO 3-22
IBUS 3-46
ict.tst file 2-4
image files 2-16
in-circuit board test 2-22
in-circuit testing 1-7
in-converters 8-3
inductive crosstalk 3-32
initCard function 3-24
initialization values 3-14
input modes
port A 3-39
port B 3-39
installing the 1ISO9141 option 8-5
Intel 82C53 devices 3-21
Intel_Intellec_8 2-24
Intel_MCS-86 2-24
Interconnect 3-3
interconnects 3-3
interrupts 2-18
INVALID_COMMAND integer value 2-15
IRQ numbers 2-18
ISO level 8-4
1ISO9141 option 8-1
installation 8-5
kit 8-1
removal 8-5
theory of operation 8-3

Index-3

Index

J

J command 2-13

Ja
see also cables, 80-pin 3-30
see connector J4 3-41

J4 signals 3-31

Jedec _format 2-24

jumper block, CCC 3-49

jumper configuration 3-50

jumpers, rear-to-front 3-5

K
keys 3-4

L

L command 2-15

LATCH signals 3-39

latches 3-8, 3-33, 3-34, 3-37, 3-38, 3-40
latency of sampling 3-34
least significant bits 3-13
library routines 2-1

line conditioner 3-4

locations of boards 1-6

lock 3-4

logic level transmissions 3-48
low-going enable 3-39

M
maintenance 9-1
measVpp() function 3-8
memory

device under test 1-6

flash 1-6

nonvolatile 1-7
metallic conduction 1-8
microcontrollers 3-7
MicroSoft QuickC 1-3, 2-1, 2-19
Microsoft Visual C/C++ 2-19
Miscellaneous Register 3-26
MobyTurbo™ 2-16
module directories 2-13, 2-14
motherboard 3-4
Motorola 68HC11, 68BHCO5 microcontrollers 3-7
Motorola_32bit 2-24
Motorola_Exorciser 2-24
Motorola_Exormax 2-24
MS-DOS operating system 1-4
multiple address buses 3-7
multiple ptprogs 2-17
multiplex

gate array input 3-30

gate array output 3-32
multiplexed channels 3-32

Index-4

N

NAND gate 3-33

network 1-4

node assignments 1-8, 1-9
nonvolatile memory 1-7
nonvolatile technologies 3-50
null modem cable 1-4, 3-1

@)
offset contribution 3-44
operators 2-4
out-converters 8-3
output modes

port A 3-39

port B 3-39
output register 3-13
output voltage 3-4

P

P command (slave.exe) 2-14

PAL chips 3-46, 3-47

PAL equations 3-51

PAO bits 3-39

parallel applications 3-8

parallel data 1-7

parallel ports, functions 3-8

parallel sensing 1-7

passing commands 2-14

paths 1-8

PBO bits 3-39

pcom.exe 2-23

PCSL bit 8-4

PCSL signal 8-3

peripheral ports 3-41

pin assignments 1-8

pin functions 1-7

Pin Number 3-41

pin signals 3-41

pinouts 1-8

plain in-circuit testing 1-7

plug-ins 3-4

plugstrip 3-4

Port A 3-9, 3-32
channel group 3-32
input modes 3-39
loading bits 3-47
output modes 3-39

port A,B,C data, register description 3-19

Port B 3-9, 3-19, 3-32
channel group 3-32
input modes 3-39
loading bits 3-47
output modes 3-39

Digital Function Processor User’s Guide-5th Ed.

Index

Port C 3-9, 3-19, 3-33, 3-36, 3-39,
bits 3-47
channel group 3-33
DR2p channels 3-40
port control, register description 3-14
Port D 3-16
port extension boards 2-18
power 3-4
power converter 3-4
power supply bay 3-4
PRGMVARS 2-6
product maintenance 9-1
programmers 2-4
PseudoCorp 2-27
pt2.cfg 2-15, 2-18
pt2.h 7-1
code listing 7-3
description 2-20
pt2.ini 4-3, 5-3, 6-3
pt2.lib, description 2-20
ptboot.exe 2-21, 3-5
ptboot.exe, description 2-21
PTDIAGS 2-4
ptprog.c 4-3,5-3, 6-3
ptprog.exe 2-4, 2-17, 4-1, 5-1, 6-1
ptprog.exe, description 2-17
pttalk.exe 2-16
ptver.exe 2-21

Q

Q command (slave.exe) 2-15
QuickC 1-3, 2-1, 2-19

R

R command (slave.exe) 2-14
RAB 3-5

rack 3-4

RDYA 3-48

READBACK 3-36, 3-39
rebooting 3-5

rebooting PROMPTest Il 3-5
receiving directories 2-14
register descriptions 3-11, 3-13
relays 1-8, 3-18

reset button 3-5

reset signals 3-8

Result Text 2-8

retrofits 1-1

ribbon cable 3-6, 3-50

RS232 1-8, 3-47, 3-48, 8-1
RXDA, RXDB 3-48

Digital Function Processor User’s Guide-5th Ed.

S

S command (slave.exe) 2-13
sampling latency 3-34
schematics, DR2p 3-28
schematics, drawing numbers of 3-28
self-test 1-7, 2-4
sending module directory contents 2-13
sense circuits 1-8
serial boot applications 1-6
serial data, asynchronous 3-22
serial mode 1-6
serial peripheral ports 3-41
serial ports 1-7
AACK 3-48
BACK 3-48
CCC 3-47
features 3-40
121,117 3-31
serial port controller 3-7
serial transmission 8-4
SHDN* bit 8-4
Signal Names 3-41
signal wires 3-6
signals on J4 3-31
silicon signature 2-5
simulators 2-27
single-bit messages 3-8
SIO, register description 3-22
slave.exe 2-12
command descriptions 2-13
description 2-12
small fixtures 1-6, 3-28
SMODE signal 8-3
software 1-3, 2-1,2 -10
crashes 3-5
updates 2-1
word size 3-12
source code 2-1
source directories 2-8
source files 2-8
special voltages 1-7
srec files 2-16
static output 3-16
stimulus generators 1-7
strobe 1-7

Index-5

Index

T
target node 1-7
TDA 3-48
TDA and TDB signals 8-3
technicians 2-4
technologies, nonvolatile 3-50
test head cage 3-4
tester
backplane data 3-18
damage to 3-17
testsheet 4-1, 5-1, 6-1
THC versions 1-7
time 2-13
time distortion 3-34
time out 2-8, 3-50
timeout status 3-21
timer trigger 3-27
timer chip 3-50
timers 3-21
timing flash algorithms 3-21
translating data files 2-16
troubleshooting 2-4
card addresses 3-45
TTL level 8-4
Turbo C 2-19
Turbo C++ 1-3
Turbo C/C++ 2-1
TXDA 3-36, 4-1
TXDB 3-36

U

U73 - Address Decode PAL 3-35
U74 - 1/0 Control PAL 3-38
UART 8-3

updates 2-1, 2-25

User Interaction 2-4

Index-6

\Y
V command (slave.exe) 2-13
values.dat, description 2-19
vector performance 1-4
vector processor option 1-1
Visual C/C++ 2-19
voltage 3-4, 3-23

levels 1-8

voltage, Vpp programmable supply 3-25, 3-50

VP 1-7
VP (vector processor) option 1-1
Vpp 1-8, 3-23

W
wiggle bits 3-8
Windows 95 2-5

wiring, PROMPTest Il vs. in-circuit 1-7

word size in software 3-12
Worksheet Fields 2-8
worksheet generation 2-7

X

X command (slave.exe) 2-15
xlate.exe 2-15

xlate.exe, description 2-15

Z

Zilog/Hitachi 85C30 chip 3-7, 3-47
ZMODEM 2-14, 2-16, 2-25
zreceive.bat, description 2-17
zsend.bat 2-14, 2-17

Digital Function Processor User’s Guide-5th Ed.

	Digital Function Processor User’s Guide
	Warranty
	Trademarks
	Manual History

	Contents
	1 - Standard Flash Memory Applications
	Overview
	Software
	Hardware

	DFP and DR2p Slot Populations
	DR2p Boards

	2 - Software Architecture
	User Interaction
	Operators
	Technicians
	Custom Application Developers

	Using DFP with Z1800-Series Testers
	Setting Up DFP
	Generating the DFP Worksheet
	Worksheet Fields

	Software Modules
	Standard Tools and Files

	File Maintenance
	Diagnostic System
	Tools for Custom Development

	3 - Hardware—Theory of Operation
	DFP and Interconnections
	Power
	Clock
	Cables

	DFP Functions
	DFP Function and Software Control
	Addresses on CCCs
	Register Descriptions

	Logic Design—DR2p
	Gate Array Input Multiplex
	The GBUS
	Other Signals on J4
	Gate Array Output Multiplex
	U73—the Address Decode PAL
	U74—the I/O Control PAL
	Significant Features of Handshaking and Serial Ports

	Logic Design—Channel Control Card
	Connectors, Signal Names, and Cable Pins
	CCC Address Management
	Channel Control Card Hardware Details
	PAL Equations

	4 - Serial Boot —Custom Example
	PT2.INI File—68C11F1
	PTPROG.C File—68C11F1
	Assembly Source Code—68HC11F1

	5 - Serial Flash in Free Air—Custom Example
	PT2.INI File
	PTPROG.C File

	6 - Parallel Flash in Free Air —Custom Example
	PT2.INI File
	PTPROG.C File

	7 - PT2.H Listing
	8 - ISO9141 Option
	Theory of Operation
	Programming
	System Capacity
	Installation
	Removal

	9 - Maintenance
	Index

