
00 7090 fm 7/16/04 8:45 AM Page i

Zend PHP Certification Study Guide
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32709-0

Library of Congress Catalog Card Number: 2004093764

Printed in the United States of America

First Printing: July 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

Acquisitions Editor
Shelley Johnston

Development Editor
Damon Jordan

Managing Editor
Charlotte Clapp

Project Editor
George E. Nedeff

Copy Editor
Rhonda Tinch-Mize

Indexer
Chris Barrick

Proofreader
Leslie Joseph

Technical Editor
Sara Golemon

Publishing Coordinator
Vanessa Evans

Multimedia Developer
Dan Scherf

Book Designer
Gary Adair

Page Layout
Kelly Maish

00 7090 fm 7/16/04 8:45 AM Page ii

Contents at a Glance
Introduction 1

1 The Basics of PHP 5

2 Object-Oriented PHP 35

3 PHP and the Web 49

4 Arrays 61

5 Strings and Regular Expressions 89

6 File Manipulation 105

7 Managing Dates and Times 115

8 Managing Email 127

9 PHP and Databases 145

10 Stream and Network Programming 157

11 Security 177

12 Debugging and Performance 185

13 Getting Ready for the Certification Exam 201

Practice Exam Questions 209

Glossary 215

Index 225

00 7090 fm 7/16/04 8:45 AM Page iii

Table of Contents

Introduction 1
What Does This Guide Cover? 1

How Is the Guide Organized? 2
Other Resources You Might Want to Consult 3

1 The Basics of PHP 5
Terms You’ll Need to Understand 5
Techniques You’ll Need to Master 6
Language and Platform 6
Getting Started 6

The Special <?= ?> Tags 8
Scripts and Files 8
Manipulating Data 9

Numeric Values 9
String Values 10
Boolean Values 11
Arrays 11
Objects 11
The NULL Data Type 11
Resources 12

Identifiers, Constants, and Variables 12
Variables 12
Variable Substitution in Strings 13
Statements 13
Constants 14

Operators 14
The Assignment Operator 14
Arithmetic Operators 15
Bitwise Operators 16
Error-control Operators 16
String Operators 17
Comparison Operators 17
Logical Operators 18
Typecasting 19

00 7090 fm 7/16/04 8:45 AM Page iv

Combined Assignment Operators 19
Combining Operations: Operator Precedence and
Associativity 19

Conditional Structures 21
Alternative if-then-else Syntax 22
Short-form if-then-else 22
The case Statement 23

Iteration and Loops 25
The while Structure 25
The do-while Structure 26
The for Loop 26
Continuing a Loop 28

Functions and Constructs 28
Functions and Variable Scope 30
Functions with Variable Parameters 31
Variable Variables and Variable Functions 32

Exam Prep Questions 33

2 Object-Oriented PHP 35
Terms You’ll Need to Understand 35
Techniques You’ll Need to Master 36
Getting Started 36
Instantiating a Class: Objects 37
Classes as Namespaces 37
Objects and References 38
Implementing Inheritance 42
Magic Functions: Serializing Objects 44
Exam Prep Questions 45

3 PHP and the Web 49
Terms You’ll Need to Understand 49
Techniques You’ll Need to Master 49
Server-side Versus Client-side 50
HTML Forms 51
Cookies 54
Sessions 56
Exam Prep Questions 57

00 7090 fm 7/16/04 8:45 AM Page v

vi Contents

4 Arrays 61
Terms You’ll Need to Understand 61
Techniques You’ll Need to Master 62
Creating Arrays 62

Using the Array Operator 63
Counting the Number of Elements in
an Array 65
Assigning Values from an Array to Multiple
Variables 65

Multidimensional Arrays 66
Navigating Arrays 68

Using foreach 69
Using the Internal Pointer 70
Using a Callback 71

Manipulating Keys 72
Checking if an Element Exists 73
Changing the Array of Keys 74
Sorting an Array by Its Keys 74

Manipulating Arrays 76
Sorting Multidimensional Arrays 78
Randomizing Arrays 81
Merging Arrays 82
Intersection and Difference 84

Serializing Arrays 85
Exam Prep Questions 86

5 Strings and Regular Expressions 89
Terms You’ll Need to Understand 89
Techniques You’ll Need to Master 89
Comparing Strings 89

Comparison with == and === 90
Using strcmp and Friends 91
Matching Portions of Strings 92

Formatting Strings 93
printf Formats 93
printf() Family Functions 95

00 7090 fm 7/16/04 8:45 AM Page vi

viiContents

Extracting Data from Strings 95
Extracting Substrings by Offset 96
Extracting Formatted Data 96

Modifying Strings 97
Modifying Substrings by Offset 97
Replacing Substrings 97

Regular Expressions 98
Basic PCRE Syntax 98
Extracting Data with Regular Expressions 100
Pattern Replacement with Regular
Expressions 101
Splitting Strings into Components 101

Exam Prep Questions 102

6 File Manipulation 105
Techniques You’ll Need to Master 105
Terms You’ll Need to Understand 105
Opening Files 106
Closing Files 107
Reading from a File 107
Writing to a File 108
Determining Information About Files 109
Manipulating Files on the Filesystem 110

Copying, Deleting, and Moving Files 110
Changing Ownership and Permissions 111

Locking Files 111
Miscellaneous Shortcuts 112

file() 112
readfile() 112
file_get_contents() 113

Exam Prep Questions 113

7 Managing Dates and Times 115
Terms You’ll Need to Understand 115
Techniques You’ll Need to Master 115
How PHP Handles Dates 115
Getting the Current Time Stamp 117

00 7090 fm 7/16/04 8:45 AM Page vii

viii Contents

Getting a Date Array 117
Formatting a Date String 119
Getting a UNIX Time Stamp from a Date Array 123
Getting A UNIX Time Stamp from a String 123
Exam Prep Questions 124

8 Managing Email 127
Introduction 127

Terms You’ll Need to Understand 127
Techniques You’ll Need to Master 127

How Email Is Delivered 127
MTA—Mail Transport Agent 128
SMTP—Simple Mail Transport Protocol 128
MX Records 128
MUA—Mail User Agent 129
SASL—Simple Authentication and
Security Layer 129
Other Emerging Technologies 129

Preparing PHP 130
If You Are Using PHP on UNIX 130
If You Are Using PHP on Windows or
Netware 131

Sending Email 132
Sending an Email to More Than One
Recipient 132

Managing Email Headers 133
The Cc: and Bcc: Headers 133
The From: Header 133

Setting the Subject 133
Formatting an Email Message 133

Plain-Text Emails 133
Basic HTML Emails 134

Attaching a File to a Message 135
Attached Images for HTML Emails 137

Using Extra Command-Line Parameters 139
A Word About Email Delivery 139
Further Reading 140
Exam Prep Questions 141

00 7090 fm 7/16/04 8:45 AM Page viii

ixContents

9 PHP and Databases 145
Terms You’ll Need to Understand 146
Techniques You’ll Need to Master 146
“Databasics” 146

Indices 147
Writing Good Indices 147
Primary Keys 148
Foreign Keys and Relations 148

Creating Tables or Adding and Removing Rows 149
Inserting a Row 149
Deleting Rows 149

Retrieving Information from a Database 150
Extracting Data from More Than One Table 150
Aggregate Functions 151
Sorting 152
Transactions 153
PHP and Databases 153

There’s Date and Date 154
Exam Prep Questions 154

10 Stream and Network Programming 157
Terms You’ll Need to Understand 157
Techniques You’ll Need to Master 157
php.ini Settings to Understand 157
What Are File Wrappers? 158

How Do You Choose Which File Wrapper Is
Used? 158
What Built-In Wrappers Does PHP
Provide? 159
Not All Wrappers Are Created Equal 160
Using a File Wrapper 162
Correctly Detecting Line Endings 162
Closing a File Wrapper 162
Other Functions That Work with File
Wrappers 163

Introducing Streams 163
What Is Stream Metadata? 163
Pipelines 165
What Is the Stream Transport? 165

00 7090 fm 7/16/04 8:45 AM Page ix

x Contents

What Is the Stream Context? 165
How Do Streams Affect Me? 166

Connecting to Remote Hosts Using Sockets 166
When Should I Use a Socket Instead of a File
Wrapper? 166
What Network Transports Does PHP
Support? 167
How Do I Open a Socket? 167
Persistent Sockets 168
Timeouts When Opening a Socket 168
How Do I Use a Socket? 169
Blocking Mode 169
Read/Write Timeouts 170
Closing a Socket 171

Further Reading 172
Exam Prep Questions 172

11 Security 177
Terms You’ll Need to Understand 177
Techniques You’ll Need to Master 177
Data Filtering 178
Register Globals 178
SQL Injection 179
Command Injection 180
Cross-Site Scripting 180
Shared Hosting 180
Exam Prep Questions 181

12 Debugging and Performance 185
Terms You’ll Need to Understand 185
Techniques You’ll Need to Master 185
Coding Standards 186

Flattening if Statements 187
Splitting Single Commands Across
Multiple Lines 188
Concatenation Versus Substitution 188
Choose Your Opening Tags Carefully 189

One Equal,Two Equals,Three Equals 189
There’s Equal and Equal 190

Testing for Resource Allocation 190

00 7090 fm 7/16/04 8:45 AM Page x

xiContents

Ternary Operators and if Statements 191
Logging and Debugging 192

Using Debuggers 193
Optimizing Performance 193

Hardware Issues 193
Web Server Issues 194
Avoid Overkill 194
Zip It Up 195

Database Optimizations 195
Keep Your Code Simple 196

Caching Techniques 196
Bytecode Caches 196

Exam Prep Questions 197

13 Getting Ready for the
Certification Exam 201
What the Exam Tests 201
How to Register 201

Registration via Pearson VUE Call Center 202
Registration via the Person VUE Website 202
Registration at the Test Center 202

What to Expect at the Test Center 202
How the Exam Works 203

Exam Instructions 203
NDA (NONDISCLOSURE
AGREEMENT) 203
Viewing Backward and Forward 204
Reviewing Your Answers 204
Your Comments 204

What Kinds of Questions Are Asked? 204
Single Choice Questions 204
Multiple Choice Questions 205
Fill in the Blanks Questions 206
Open Questions 207

Practice Exam Questions 209

Glossary 215

Index 225

00 7090 fm 7/16/04 8:45 AM Page xi

About the Authors
Stuart Herbert has designed and implemented solutions for major companies such as
Eurostar,Vodafone, and HP, and has been the lead maintainer of the Generic NQS
project since 1994.A former systems manager with Orange UK, Stuart is currently one
of the developers for Gentoo Linux, where he looks after Gentoo’s installer for web-
based packages.

Daniel Kushner is the director of training and certification at Zend Technologies.As
director of training and certification, Daniel is responsible for the Zend PHP
Certification program. In addition to designing the certification program, he developed
the Zend PHP Training program, which provides the necessary study guide and classes
to help PHP developers become Zend PHP certified.As part of the program, Daniel also
initiates and maintains business relationships and partnerships with worldwide PHP
training facilities. Prior to Zend Technologies, Daniel was a senior software engineer at
DynamicLogic, responsible for developing integrated research recruitment solutions used
in name brand websites including Yahoo!,AOL, and Lycos. Previously, he was a PHP
freelancer, developing front and backend web applications, including e-commerce inte-
gration, member services and personalization, auction management, email delivery sys-
tems, and online file manipulation services for companies such as MTV,Arista,Viacom
Outdoor,Accuweather, and Dell Computer Corporation.While freelancing, Daniel was
also a PHP training instructor, where he worked with developers from highly acclaimed
universities such as Harvard and Columbia and with companies such as Google, The New
York Times, and the American Museum of Natural History.

George Schlossnagle is a principal at OmniTI Computer Consulting, a Maryland-
based tech company specializing in high-volume web and email systems. Before joining
OmniTI, George lead technical operations at several high-profile community websites,
where he developed experience managing PHP in very large enterprise environments.
George is a frequent contributor to the PHP community. His work can be found in the
PHP core, as well as in the PEAR and PECL extension repositories. George also writes
prolifically on PHP. He is the author of Advanced PHP Programming (Developers Library,
2004), as well as numerous articles for both print and online journals. He served as a
subject matter expert for the Zend PHP Certification exam.

Chris Shiflett is a frequent contributor to the PHP community and one of the leading
security experts in the field. His solutions to security problems are often used as points
of reference, and these solutions are showcased in his talks at conferences such as
ApacheCon and the O’Reilly Open Source Convention and his articles in publications
such as PHP Magazine and php|architect.“Security Corner,” his monthly column for
php|architect, is the industry’s first and foremost PHP security column. Chris is the author
of the HTTP Developer’s Handbook (Sams Publishing) and PHP Security (O’Reilly and
Associates). In order to help bolster the strength of the PHP community, he is also lead-
ing an effort to create a PHP community site at PHPCommunity.org. Chris is also a
subject matter expert for the Zend PHP Certification Exam.

00 7090 fm 7/16/04 8:45 AM Page xii

Björn Schotte is a German PHP veteran. He co-founded the first German-speaking
portal for PHP topics in early 1999, co-organized the first worldwide PHP conference,
and has been editor-in-chief of PHP Magazin since 2001. He also co-founded
ThinkPHP, Germany’s No. 1 PHP solution company dealing mainly with large PHP
applications for clients such as HypoVereinsbank, Sixt, Lycos Europe, E.ON, Cap
Gemini, Ernst & Young, and others. His company now consists of a team of more than
15 people, including PHP core developers.Among his other accomplishments, he has
beta-tested the MySQL Core Certification Program, is a well-known speaker at confer-
ences such as CeBit Systems and LinuxTag where he promotes PHP in the enterprise,
and has taught over 250 people in his PHP courses since 2000. You can reach him at
schotte@mayflower.de. His company’s website is at http://www.thinkphp.de/.

Marco Tabini is the publisher of php|architect (http://www.phparch.com), the premier
magazine for PHP professionals, and has worked on websites for clients ranging from
small startup operations to the Fortune 500s. Despite having been an IT industry profes-
sional for the last fifteen years, he still manages to maintain a reasonable level of sanity—
at least most of the time. Marco is also a subject matter expert for the Zend PHP
Certification Exam.

00 7090 fm 7/16/04 8:45 AM Page xiii

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: opensource@samspublishing.com
Mail: Mark Taber

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or others from Sams Publishing, visit our website
at www.samspublishing.com.Type the ISBN (0672327090) or the title of the book in
the Search box to find the book you’re looking for.

00 7090 fm 7/16/04 8:45 AM Page xiv

Foreword
PHP has grown a lot since its inception in 1997. PHP 4, released in May 2000, gained
popularity and is already installed on more than a quarter of the Internet Web servers in
the world—more than any other Web platform in existence as of mid-2003.Top-notch
performance, the availability of good development tools such as the Zend Studio, and the
explosive growth in availability of extension support for any third-party library or infor-
mation store you can imagine have helped PHP become the best platform for develop-
ing and deploying Web applications.

With each passing month, it is becoming even more difficult to call PHP the “hidden
gem of the Web.” It is still a gem all right, but hidden? No longer. High profile compa-
nies, such as Lufthansa,Yahoo!, and Electronic Arts are now using PHP extensively, giv-
ing PHP a corporate “stamp of approval” for those who were waiting for one.An
increasing number of companies are joining them every day, disproving those who say
that PHP is not ready for the enterprise.With PHP 5, this trend is likely to continue
even more rapidly.

As the scope of PHP widens, and as larger companies hire PHP personnel, they need
to have a standard, reliable way of assessing one’s abilities and capabilities with PHP.
Moreover, the need for PHP developers to have an “official blessing” of their PHP skills
is on the rise as the market becomes more competitive.The Zend PHP Certification
program is aimed at providing a solution for both these companies and developers by
providing a standard, objective, and comprehensive measurement of one’s PHP skills.

This is exactly where this book comes into the picture. Zend PHP Certification Study
Guide has been written by some of the same people who designed the Zend PHP
Certification. It goes over all the topics that are required by the certification, placing an
emphasis on the things that you need to keep in mind in order to pass the certification
exam successfully. It is a must have for anybody planning to become a Zend Certified
PHP Engineer—at least those who don’t enjoy retaking exams.

Good luck with your test!

Andi Gutmans Zeev Suraski
Co-founder and Co-founder and
Vice President of Technology Chief Technology Officer
Zend Technologies Zend Technologies

00 7090 fm 7/16/04 8:45 AM Page xv

00 7090 fm 7/16/04 8:45 AM Page xvi

Introduction

IF YOU’RE READING THIS BOOK, you’ve probably made a decision that becoming a Zend
Certified Engineer is an important step in your career.And, indeed, it might well be—
the certification exam will test your knowledge of PHP in many areas, ranging from the
basics to the more complex topics.As PHP’s adoption grows inside the enterprise, being
certified can mean that you will have an edge when that dream job comes along!

The exam was designed by a number of well-known people in the PHP community
in collaboration with experts in the field of computer-assisted testing.They approached
it with a simple set of goals:

n Test the level of PHP knowledge of the candidate without prejudice to other
technologies

n Use a set of testing questions that reflect real-world scenarios as accurately as pos-
sible

n Avoid questions that rely on a person’s understanding of the language rather than
his or her understanding of PHP and its related programming techniques

It’s very important to understand these points as you approach your studies, as well as the
exam itself, in particular when it comes to testing technologies that are used in conjunc-
tion with PHP.The test authors decided that, rather than relying on assumptions as to
what other technologies a PHP programmer is likely to use in his or her daily job, the
exam should focus on PHP itself and on those topics that a developer deals with often
without any ties to a particular product.

Thus, although you will probably encounter one or more questions about database
development during your exam, they will not be linked to a particular DBMS, such as
MySQL or Oracle. Rather, they will deal with the general concepts of database pro-
gramming and the standard SQL language.

What Does This Guide Cover?
The Zend PHP Certification Study Guide covers every topic that is part of the exam. It
was developed by some of the very same authors who designed the exam’s questions and
was thoroughly reviewed to ensure that it provides every bit of information required to
cover each subject appropriately.

01 7090 Intro 7/16/04 8:43 AM Page 1

2 Introduction

One thing that this book is not is a PHP development tutorial or a reference book on
the language and its extensions. Our goal in developing the guide is to provide you with
a study aid that can help you focus on those topics that you will be questioned on dur-
ing the exam. It is not a substitute for your experience as a PHP programmer in the real
world, and it does not provide you with a “magic bullet” that will make you pass the test
if you have never written a line of code in your life.

Remember that this book—and the certification guide—are based on PHP 4.This is
essential, particularly when it comes to object-oriented programming, where the differ-
ences between PHP 4 and PHP 5 are very pronounced.Whatever you read in this book,
as well as anything that shows up in a question at the exam, does not take PHP 5 into
account whatsoever.

Many of the questions in the exam have been designed so that they mimic scenarios
that you are likely to encounter in real life. Many of them involve the practical analysis
of snippets of PHP code that might contain bugs or that might rely on PHP’s particular
behavior in order to reach a particular goal that is not immediately obvious.

These are not trick questions—they are designed to determine how well you under-
stand the unique way in which PHP works so that, when a similar problem occurs in
real life, you will be able to tackle it properly and efficiently.

We have designed this guide along the same lines.Although you will find a good
amount of theory among the pages of this book, it will always be presented to you with
an eye to its practical applications. In addition, each chapter includes a set of sample
questions that are similar in structure to the ones you will find at the exam (although
they are not the same, of course).

In line with our goal of giving you all the tools you need to successfully pass the
exam, we thought you might also want to know what taking the exam is like. Chapter
13,“Getting Ready for the Certification Exam,” discusses what to expect when you go
to the certification center and how the exam works.

How Is the Guide Organized?
We intended the book to be read as a tutorial, rather than a reference.As such, the best
way is to start with Chapter 1,“The Basics of PHP,” and move your way to the end, as
each chapter introduces new concepts by building on the information provided by the
chapters that precede it.

While reading the guide, it’s useful to remember that you are preparing for an exam.
Read each section carefully and try to remember not only the essential points, but also
those elements that might be useful while you’re trying to tackle the exam.

If you already have experience in PHP development—as you probably will if you
intend to take the exam—you might think that some of the topics we have covered in
the guide are quite basic—and, to some extent, they are. However, they are covered from
the point of view of the exam, and this means that you might discover some facts that
you are not aware of because you have not encountered a real-life scenario in which
they are relevant, but that might well show up in a question during your test.

01 7090 Intro 7/16/04 8:43 AM Page 2

3Introduction

Finally, don’t forget to peruse the sample questions that you can find at the end of
each chapter.As we mentioned earlier, they are similar in structure (although not in con-
tent) to the real ones, and they rely heavily on the proper analysis of practical sample
code.Answering them can help you not only to determine how well your studies are
progressing, but also to familiarize yourself with the way the questions are phrased in the
exam.

Other Resources You Might Want to Consult
As we mentioned at the beginning of this introduction, there is no substitute for experi-
ence when it comes to passing the exam.You’ll find that very few questions are of a
didactical nature and that most require some practical steps in order to find the right
answer.

Although this guide covers all the topics that are part of the exam, you might want to
examine some of the subjects in more depth.The best resource for this purpose is the
PHP Manual, which you can find online at http://www.php.net or through your local
PHP mirror. In fact, it’s probably a good idea to keep the manual handy while you’re
reading this book and refer to it for additional information on a specific topic. Simply
remember that the manual covers all versions of PHP, whereas this guide and the exam
are specific to PHP 4.

01 7090 Intro 7/16/04 8:43 AM Page 3

01 7090 Intro 7/16/04 8:43 AM Page 4

1
The Basics of PHP

PHP IS THE MOST POPULAR WEB-DEVELOPMENT language in the world.According to
estimates compiled in April 2004, there are over fifteen million unique domains—and
almost two million unique IPs—on the World Wide Web that reside on servers where
PHP is supported and used.

The term “PHP” is actually a “recursive acronym” that stands for PHP: Hypertext
Preprocessor. It might look a bit odd, but it is quite clever, if you think of it. PHP is a
“scripting language”—a language intended for interpretation and execution rather than
compilation such as, for example, C.

The fact that PHP is interpreted and not compiled, however, does not mean that it is
incapable of meeting the demands of today’s highly intensive web environments—in fact,
a properly written PHP script can deliver incredibly high performance and power.

Terms You’ll Need to Understand
n Language and Platform
n Language construct
n Data type
n Opening and closing tags
n Expression
n Variable
n Operation and operator precedence
n Conditional structures
n Iteration and Loops
n Functions
n Variable variables and variable functions

02 7090 ch01 7/16/04 8:44 AM Page 5

6 Chapter 1 The Basics of PHP

Techniques You’ll Need to Master
n Creating a script
n Entering PHP mode
n Handling data types
n Type casting and type juggling
n Creating statements
n Creating operations and expressions
n Writing functions
n Handling conditional statements
n Handling loops

Language and Platform
The two biggest strengths of PHP are its simplicity and the incredible set of functionality
that it provides.As a language, it incorporates C’s elegant syntax without the hassle of
memory and pointer management, as well as Perl’s powerful constructs—without the
complexity often associated with Perl scripts.

As a platform, PHP provides a powerful set of functions that cover a multitude of dif-
ferent needs and capabilities. Programmers who work on commercial platforms such as
Microsoft ASP often marvel at the arsenal of functionality that a PHP developer has at
his fingertips without the need to purchase or install anything other than the basic inter-
preter package.What’s more, PHP is also extensible through a set of well-defined C APIs
that make it easy for anyone to add more functionality to it as needed.

You have probably noticed that we have made a distinction between “language” and
“platform.” By the former, we mean PHP proper—the body of syntactical rules and
constructs that make it possible to create a set of commands that can be executed in a
particular sequence.The latter, on the other hand, is a term that we use to identify those
facilities that make it possible for the language to perform actions such as communicat-
ing with the outside, sending an email, or connecting to a database.

The certification exam verifies your knowledge on both the language and the plat-
form—after all, a good programmer needs to know how to write code and how to use
all the tools at his disposal. Therefore, it is important that you acquaint yourself with
both aspects of PHP development in order to successfully pass the exam.

Getting Started
The basic element of a PHP application is the script.A PHP script contains a number of
commands that the PHP interpreter reads, parses, and executes.

02 7090 ch01 7/16/04 8:44 AM Page 6

7Getting Started

Because PHP is designed to manipulate text files—such as HTML documents—and
output them, the process of mixing hard-coded textual content and PHP code is facili-
tated by the fact that unless you tell it otherwise, the PHP interpreter considers the con-
tents of the script file as plain text and outputs them as they are.

It’s only when you explicitly indicate that you are embedding PHP code inside a file
that the interpreter goes to work and starts parsing and executing commands.This is
done by using a special set of opening and closing tags. In part because of historical reasons
and in order to promote maximum flexibility, PHP supports three different sets of tags:

n PHP opening (<?php) and closing (?>) tags
n HTML-style tags (<script language=”php”> and </script>)
n “Short” tags: <? and ?>
n “ASP-style” tags: <% and %>

The full PHP tags are always available to a script, whereas short tags and ASP-style tags
might or might not be available to your script, depending on how the particular installa-
tion of the PHP interpreter used to execute it is configured.This is made necessary by
the fact that short tags can interfere with XML documents, whereas ASP-style tags can
interfere with other languages that can be used in conjunction with PHP in a chain of
preprocessors that manipulate a file multiple times before it is outputted.

Let’s take a look at the following sample PHP script:

<html>

<head>

<title>

This is a sample document

</title>

<body>

<?php

echo ‘This is some sample text’;

?>

</body>

</html>

As you can see, this document looks exactly like a normal HTML page until the inter-
preter hits the <?php tag, which indicates that text following the tag should be interpret-
ed as PHP commands and executed.

Right after the opening tag, we see a line of PHP code, which we’ll examine in detail
later on, followed by the ?> closing tag.After the interpreter sees the closing tag, it stops
trying to parse PHP commands and simply outputs the text as it appears without any
change. Note that, as long as your copy of PHP has been configured to support more
than one type of opening and closing tags, you can mix and match opening and closing
tags from different families—for example, <?php echo ‘a’ %> would be a valid script.
From a practical perspective, however, doing so would be pointless and confusing—defi-
nitely not a good programming practice.

02 7090 ch01 7/16/04 8:44 AM Page 7

8 Chapter 1 The Basics of PHP

Naturally, you can switch between plain-text and PHP execution mode at any point
during your script and as long as you remember to balance your tags—that is, to close
any tags you open, you can switch an arbitrary number of times.

The Special <?= ?> Tags
A special set of tags, <?= and ?>, can be used to output the value of an expression direct-
ly to the browser (or, if you’re not running PHP in a web environment to the standard
output).They work by forcing PHP to evaluate the expression they contain and they
output its value. For example,

<?= “This is an expression” ?>

Scripts and Files
It’s important to note that there isn’t necessarily a one-to-one correspondence between
scripts and files—in fact, a script could be made up of an arbitrary number of files, each
containing one or more portions of the code that must be executed. Clearly, this means
that you can write portions of code so that they can be used by more than one script,
such as library, which makes a PHP application even more flexible.

The inclusion of external files is performed using one of four different language con-
structs:

n include, which reads an external file and causes it to be interpreted. If the inter-
preter cannot find the file, it causes a warning to be produced and does not stop
the execution of the script.

n require, which differs from include in the way it handles failure. If the file to be
included cannot be found, require causes an error and stops the script’s execu-
tion.

n require_once and include_once, which work in a similar way to require and
include, with one notable difference: No matter how many times you include a
particular file, require_once and include_once will only read it and cause it to
be interpreted once.

The convenience of require_once and include_once is quite obvious because you
don’t have to worry about a particular file being included more than once in any given
script—which would normally cause problems because everything that is part of the file
would be interpreted more than once. However, generally speaking, situations in which a
single file is included more than once are often an indicator that something is not right
in the layout of your application. Using require_once or include_once will deprive
you of an important debugging aid because you won’t see any errors and, possibly, miss a
problem of larger magnitude that is not immediately obvious. Still, in some cases there is
no way around including a file more than once; therefore, these two constructs come in
very handy.

02 7090 ch01 7/16/04 8:44 AM Page 8

9Manipulating Data

Let’s try an example.We’ll start with a file that we will call includefile.php:

<?php

echo ‘You have included a file’;

?>

Next, we’ll move on to mainfile.php:
<?php

include ‘includefile.php’;

echo ‘I should have included a file.’;

?>

If you make sure to put both files in the same directory and execute mainfile.php, you
will notice that includefile.php is included and executed, causing the text You have
included a file to be printed out.

Note that if the two files are not in the same folder, PHP will look for
includefile.php in the include path.The include path is determined in part by the
environment in which your script is running and by the php.ini settings that belong to
your particular installation.

Manipulating Data
The manipulation of data is at the core of every language—and PHP is no exception. In
fact, handling information of many different types is very often one of the primary tasks
that a script must perform; it usually culminates with the output of some or all the data
to a device—be it a file, the screen, or the Internet.

When dealing with data, it is often very important to know what type of data is being
handled. If your application needs to know the number of times that a patient has visited
the hospital, you want to make sure that the information provided by the user is, indeed,
a number, and an integer number at that because it would be difficult for anybody to
visit the hospital 3.5 times. Similarly, if you’re asking for a person’s name, you will, at the
very least, ensure that you are not being provided with a number, and so on.

Like most modern languages, PHP supports a variety of data types and is capable of
operating them in several different ways.

Numeric Values
PHP supports two numeric data types: integer and real (or floating-point). Both types
correspond to the classic mathematical definition of the types—with the exception that
real numbers are stored using a mechanism that makes it impossible to represent certain
numbers, and with a somewhat limited precision so that, for example, 2 divided by 3 is
represented as 0.66666666666667.

02 7090 ch01 7/16/04 8:44 AM Page 9

10 Chapter 1 The Basics of PHP

Numeric values in base 10 are represented only by digits and (optionally) a dot to
separate units from fractional values.The interpreter does not need commas to group the
integer portion of the value in thousands, nor does it understand it, producing an error if
you use a format such as 123,456. Similarly, the European representation (comma to sep-
arate the fractional part of the value from the integer one) is not supported.

As part of your scripts, you can also enter a value in hexadecimal (base 16) represen-
tation—provided that it is prefixed by 0x, and that it is an integer. Both uppercase and
lowercase hexadecimal digits are recognized by the interpreter, although traditionally
only lowercase ones are actually used.

Finally, you can represent an integer value in octal (base 8) notation by prefixing it
with a single zero and using only digits between 0 and 7.Thus, the value 0123 is not the
same as 123.The interpreter will parse 0123 as an octal value, which actually corresponds
to 83 in decimal representation (or 0x53 in hexadecimal).

String Values
Although we often think of strings as pieces of text, a string is best defined as a collec-
tion of bytes placed in a specific order.Thus, a string could contain text—say, for example,
a user’s first and last name—but it could also contain arbitrary binary data, such as the
contents of a JPEG image of a MIDI file.

String values can be declared using one of three methods.The simplest one consists of
enclosing your string in single quotes:

‘This is a simple string’

The information between the quotes will be parsed by the interpreter and stored with-
out any modification in the string. Naturally, you can include single quotation marks in
your string by “escaping” them with a backslash:

‘He said: \’This is a simple string\’’

And this also means that, if you want to include a backslash, you will have to escape it as
well:

‘The file is in the c:\\test directory’

Another mechanism used to declare a string uses double quotation marks.This approach
provides a bit more flexibility than the previous one, as you can now include a number
of special characters through specific escape sequences:

n \n—A line feed
n \r—A carriage return
n \t—A horizontal tab
n \\—A backslash
n \”—A double quote
n \nnn—A character corresponding to the octal value of nnn (with each digit being

between 0 and 7)
n \xnn—A character corresponding to the hexadecimal value of nn

02 7090 ch01 7/16/04 8:44 AM Page 10

11Manipulating Data

Double-quote strings can also contain carriage returns. For example, the following
strings are equivalent:

“This\nis a string”

“This

is a string”

The final method that you can use to declare a string is through the heredoc syntax:

<<<ENDOFTEXT

My text goes here.

More text can go on another line.

You can even use escape sequences: \t

ENDOFTEXT;

As you can see, the <<< heredoc tag is followed by an arbitrary string of text (which
we’ll call the marker) on a single line.The interpreter will parse the contents of the file as
a string until the marker is found, on its own, at the beginning of a line, followed by a
semicolon. Heredoc strings can come in handy when you want to embed large amounts
of text in your scripts—although you can sometimes achieve a similar goal by simply
switching in and out of PHP mode.

Boolean Values
A Boolean value can only be True or False.This type of value is generally used in
Boolean expressions to change the flow of a script’s execution based on certain condi-
tions.

Note that, although PHP defines True and False as two valid values when printed,
Boolean values are always an empty string (if false) or the number 1 (if true).

Arrays
Arrays are an aggregate value—that is, they represent a collection of other values. In PHP,
arrays can contain an arbitrary number of elements of heterogeneous type (including
other arrays). Each element is assigned a key—another scalar value used to identify the
element within the array.You’ll find this particular data type discussed in greater detail in
Chapter 4,“Arrays.”

Objects
Objects are self-contained collections of code and data.They are at the core of object-
oriented programming and can provide a very valuable tool for creating solid, enter-
prise-level applications.They are described in Chapter 2,“Object-Oriented PHP.”

The NULL Data Type
It is sometimes important to indicate that a datum has “no value”. Computer languages
need a special value for this purpose because even zero or an empty string imply that a
value and a type have been assigned to a datum.

The NULL value, thus, is used to express the absence of any type of value.

02 7090 ch01 7/16/04 8:44 AM Page 11

12 Chapter 1 The Basics of PHP

Resources
A resource is a special type of value that indicates a reference to a resource that is exter-
nal to your script and, therefore, not directly accessible from it.

For example, when you open a file so that you can add contents to it, the underlying
code actually uses the operating system’s functionality to create a file descriptor that can
later be used for manipulating the file.This description can only be accessed by the func-
tionality that is built into the interpreter and is, therefore, embedded in a resource value
for your script to pass when taking advantage of the proper functionality.

Identifiers, Constants, and Variables
One of the most important aspects of any language is the capability to distinguish
between its various components.To ensure that the interpreter is capable of recognizing
each token of information passed to it properly, rules must be established for the purpose
of being capable to tell each portion apart from the others.

In PHP, the individual tokens are separated from each other through “whitespace”
characters, such as the space, tab, and newline character. Outside of strings, these charac-
ters have no semantic meaning—therefore, you can separate tokens with an arbitrary
number of them.With one notable exception that we’ll see in the next section, all
tokens are not case sensitive—that is, echo is equivalent to Echo, or even eCHo.

Identifiers, which, as their name implies, are used as a label to identify data elements
or groups of commands, must be named as follows:

n The first character can either be a letter or an underscore.
n Characters following the second can be an arbitrary combination of letters, digits,

and underscores.

Thus, for example, the following are all valid identifiers:
n __anidentifier

n yet_another_identifier___

n _3_stepsToSuccess

Variables
As you can imagine, a language wouldn’t be very useful if all it could deal with were
immediate values: Using it would be a bit like buying a car with no doors or windows—
sure, it can run fast, but to what purpose?

Similar to almost every computer language, PHP provides a facility known as a “vari-
able” capable of containing data. PHP variables can contain one value at a time
(although that value could, for example, be an array, which itself is a container for an
arbitrary number of other values).

02 7090 ch01 7/16/04 8:44 AM Page 12

13Identifiers, Constants, and Variables

Variables are identifiers preceded by a dollar sign ($).Therefore, they must respect all
the rules that determine how an identifier can be named.Additionally, variable names are
case sensitive, so $myvar is different from $MyVar.

Unlike other languages, PHP does not require that the variables used by a script be
declared before they can be used.The interpreter will create variables as they are used
throughout the script.

Although this translates in a high degree of flexibility and generally nimbler scripts, it
can also cause plenty of frustration and security issues.A simple spelling mistake, for
example, could turn a reference to $myvar to, say, $mvvar, thus causing your script to ref-
erence a variable that doesn’t exist. Similarly, if the installation of PHP that you are run-
ning has register_globals set to true, a malicious user will be able to set variables in
your script to arbitrary values unless you take the proper precautions—more about that
later in this chapter.

Variable Substitution in Strings
Both the double-quote and heredoc syntaxes support the ability to embed the value of a
variable directly in a string:

“The value of \$a is $a”

In the preceding string, the second instance of $a will actually be replaced by the value
of the $a variable, whereas the first instance will not because the dollar sign is escaped by
a backslash.

For those cases in which this simple syntax won’t work, such as when there is no
whitespace between the name of the variable whose value you want to extract and the
remainder of the string, you can forcefully isolate the data to be replaced by using braces:

<?

$thousands = 100;

echo “There are {$thousands}000 values”;

?>

Statements
A statement corresponds to one command that the interpreter must execute.This could
be an expression, a call to another block of code, or one of several constructs that PHP
defines. For example, the echo construct causes the value of an expression to be sent to
the script’s output device.

Statements always end in a semicolon—if they don’t, the system will output a parsing
error.

02 7090 ch01 7/16/04 8:44 AM Page 13

14 Chapter 1 The Basics of PHP

Constants
As their name implies, constants are data holders whose type and value doesn’t change.

A constant is create by using the define() construct. Here’s an example:

<?php

define (“SOME_CONSTANT”, 28);

echo SOME_CONSTANT;

?>

As you can see, define() takes two parameters; the first, a string, indicates the name of
the constant, whereas the second indicates its value.After you have defined a constant,
you can use it directly from your code, as we have done here.This means that although,
in theory, you can define a constant with an arbitrary name, you will only be able to use
it if that name follows the identifier naming rules that we discussed in the previous
sections.

Operators
Variables, constants, and data types are not very useful if you can’t combine and manipu-
late them in a variety of ways. In PHP, one of these ways is through operators.

PHP recognizes several classes of operators, depending on what purpose they are
used for.

The Assignment Operator
The assignment operator = is used to assign a value to a variable:

$a = 10;

$c = “Greetings Professor Faulken”;

$test = false;

It’s very important to understand that, by default, variables are assigned by value.This
means that the following

$a = $b

Assigns the value of $b to $a. If you change $b after the assignment has taken place, $a
will remain the same.This might not always be what you actually want to happen—you
might need to link $a and $b so that a change to the latter is also reflected in the latter.
You can do so by assigning to $a a reference to $b:

$a = &$b

Any change to $b will now also be reflected in $a.

02 7090 ch01 7/16/04 8:44 AM Page 14

15Operators

Arithmetic Operators
Perhaps the class of operators that most newcomers to PHP most readily identify with is
the one that includes arithmetic operations.These are all part of binary operations
(meaning that they always include two operators):

n Addition (+)
n Subtraction (-)
n Multiplication (*)
n Division (/)
n Modulus (%)

Operations are written using the infix notation that we are all used to. For example,

5 + 4

2 * $a

Keep in mind that the modulus operation works a bit different from the typical mathe-
matical operation because it returns a signed value rather than an absolute one.

PHP also borrows four special incrementing/decrementing operators from the C
language:

n The prefix incrementing operator ++ increments the value of the variable that suc-
ceeds it, and then returns its new value. For example, ++$a

n The postfix incrementing operator ++ returns the value of the variable that pre-
cedes it, and then increments its value. For example, $a++

n The prefix decrementing operator — decrements the value of the variable that suc-
ceeds it, and then returns its new value. For example, —$a

n The postfix decrementing operator — returns the value of the variable that pre-
cedes it, and then decrements its value. For example, $a—

The difference between the prefix and postfix version of the operators is sometimes dif-
ficult to grasp, but generally speaking is quite simple:The prefix version changes the
value of the variable first, and then returns its value.This means that if the value of $a is
1, ++$a will first increment $a by one, and then return its value (which will be 2).
Conversely, the postfix version returns the value first and then modifies it—so, if $a is 1,
$a++ will first return 1 and then increment $a to 2.

Unary incrementing and decrementing operations can be extremely helpful because
they enable for the modification of a variable in an atomic way and can easily be com-
bined with other operations. However, this doesn’t mean that they should be abused, as
they can make the code more difficult to read.

02 7090 ch01 7/16/04 8:44 AM Page 15

16 Chapter 1 The Basics of PHP

Bitwise Operators
This class of operators manipulates the value of variables at the bit level:

n The bitwise AND (&)operation causes the value of a bit to be set if it is set in both
the left and right operands. For example, 1 & 1 = 1, whereas 1 & 2 = 0.

n The bitwise OR (|) operation causes the value of a bit to be set if it is set in
either the left or right operands. For example, 1 | 1 = 1 and 1 | 2 = 3.

n The bitwise XOR (^) operation causes the value of a bit to be set if it is set in
either the left or right operands, but not in both. For example, 1 ^ 1 = 0, 1 ^ 0
= 1.

n The bitwise NOT (~)operation causes the bits in its operand to be reversed—that
is, set if they are not and unset otherwise. Keep in mind that if you’re dealing with
an integer number, all the bits of that integer number will be reversed providing a
value that you might not expect. For example, on a 32-bit IBM platform, where
each integer is represented by a single 32-bit value, ~0 = -1, because the integer is
signed.

n The bitwise left-shift (<<) and right-shift (>>) operators actually shift the bits of
the left operands left or right by the number of positions specified by the right
operand. For example, 4 >> 1 = 2, whereas 2 << 1 = 4. On integer values, shift-
ing bits to the left by n positions corresponds to multiplying the left operand by
2n, whereas shifting them right by n position corresponds to dividing the left
operand by 2n.

Remember that bitwise operations can only be performed on integer values. If you use a
value of a different type, PHP will convert it for you as appropriate or output an error if
it can’t.

Error-control Operators
PHP is normally very vocal when it finds something wrong with the code it’s interpret-
ing and executing, outputting verbose and helpful error messages to mark the occasion.
Sometimes, however, it’s practical to ensure that no error be reported, even if an error
condition occurs.

This can be accomplished by using the error-suppression operator @ in front of the
operation you want to perform. For example, the following would normally print an
error because the result of a division by zero is infinity—a number that cannot be repre-
sented by any of the PHP data types.With the @ operator, however, we can prevent the
error from being printed out (but not from occurring):

<?php

@$a = 1 / 0;

?>

02 7090 ch01 7/16/04 8:44 AM Page 16

17Operators

This operator can be very dangerous because it prevents PHP from notifying you that
something has gone wrong.You should, therefore, use it only whenever you want to pre-
vent errors from propagating to a default handler because you have a specialized code
segment that you want to take care of the problem. Generally speaking, it’s a bad idea to
use this approach simply as a way to “silence” the PHP interpreter, as there are better
ways to do so (for example, through error logging) without compromising its error
reporting capabilities.

Note that not all types of errors can be caught and suppressed using the @ operator.
Because PHP first parses your script into an intermediate language that makes execution
faster and then executes it, it won’t be capable of knowing that you have requested error
suppression until the parsing phase is over and the execution phase begins.As a result,
syntax errors that take place during the parsing phase will always result in an error being
outputted, unless you have changed your php.ini settings in a way that prevents all errors
from being outputted independently from your use of the @ operator.

String Operators
When it comes to manipulating strings, the only operator available is the concatenation
operator, identified by a period (.).As you might imagine, it concatenates two strings
into a third one, which is returned as the operation’s result:

<?php

$a = ‘This is string ‘;

$b = $a . “is complete now.”;

?>

Comparison Operators
Comparison operators are used to determine the relationship between two operands.
The result of a comparison is always a Boolean value:

n The == operator determines if two values are equal. For example, 10 == 10
n The != operator determines if two values are different. For example, 10 != 11
n The < operator determines whether the left operand’s value is less than the right

operand’s.
n The > operator determines whether the left operand’s value is greater than the

right operand’s.
n The <= operator determines whether the left operand’s value is less than or equal

to the right operand’s.
n The >= operator determines whether the left operand’s value is greater than the

right operand’s.

02 7090 ch01 7/16/04 8:44 AM Page 17

18 Chapter 1 The Basics of PHP

To facilitate the operation of comparing two values, PHP will “automagically” perform a
set of conversions to ensure that the two operands being compared will have the same
type.

Thus, if you compare the number 10 with the string “10”, PHP will first convert the
string to an integer number and then perform the comparison, whereas if you compare
the integer 10 to the floating-point number 11.4, the former will be converted to a
floating-point number first.

For the most part, this feature of PHP comes in very handy. However, in some cases it
opens up a few potentially devastating pitfalls. For example, consider the string “test”. If
you compare it against the number 0, PHP will first try to convert it to an integer num-
ber and, because test contains no digits, the result will be the value 0. Now, it might
not matter that the conversion took place, but if, for some reason, you really needed the
comparison to be between two numbers, you will have a problem: “11test” compared
against 11 will return True—and that might not exactly be what you were expecting!

Similarly, a 0 value can give you trouble if you’re comparing a number against a
Boolean value because False will be converted to 0 (and vice versa).

For those situations in which both the type and the value of a datum are both rele-
vant to the comparison, PHP provides two “identity” operators:

n The === operator determines whether the value and the type of the two operands
is the same.

n The !== operator determines whether either the value or the type of the two
operands is different.

Thus, while 10 == “10”, 10 !== “10”.

Logical Operators
Logical operators are often used in conjunction with comparison operators to create
complex decision mechanisms.They also return a Boolean result:

n The AND operator (indicated by the keyword and or by &&) returns True if both
the left and right operands cannot be evaluated to False

n The OR operator (indicated by the keyword or or by ||) returns True if either
the left or right operand cannot be evaluated as False

n The XOR operator (indicated by the keyword xor) returns True if either the left
or right operand can be evaluated as True, but not both.

n The unary NOT operator (indicated by !) returns False if the operand can be
evaluated as True, and True otherwise.

Note that we used the term “can be evaluated as” rather than “is.”This is because, even if
one of the operands is not a Boolean value, the interpreter will try to convert it and use
it as such.Thus, any number different from 0 is evaluated as True, as is every string that
is not empty or is not ‘0’.

02 7090 ch01 7/16/04 8:44 AM Page 18

19Operators

Typecasting
Even though PHP handles data types automatically most of the time, you can still
force it to convert a particular datum to a specific type by using a typecasting operator.
These are

n (int) to cast a value to its integer equivalent
n (float) to cast a value to its floating-point equivalent
n (string) to cast a value to its string equivalent
n (array) to force the conversion of the operand to an array if it is not one already
n (object) to force the conversion of the operand to an object if it is not one

already

Keep in mind that some of these conversions fall prey to the same pitfalls that we dis-
cussed earlier for automatic conversions performed during comparisons.

Combined Assignment Operators
A particular class of operators combines the assignment of a value with another opera-
tion. For example, += causes the left-hand operator to be added to the right-hand opera-
tor, and the result of the addition stored back in to the left-hand operator (which must,
therefore, be a variable). For example,

<?php

$a = 1;

$a += 5;

?>

At the end of the previous script’s execution, $a will have a value of 6.All the binary
arithmetic and bitwise operators can be part of one of these combined assignment oper-
ations.

Combining Operations: Operator Precedence and Associativity
Operator precedence determines in what order multiple combined operations that are
part of the same expression are executed. For example, one of the basic rules of arith-
metic is that multiplications and divisions are executed before additions and subtractions.
With a large number of types of operations available, things get a bit more complicated,
but are by no means complex.

When two operations having the same precedence must be performed one after the
other, the concept of associativity comes in to play.A left-associative operation is executed
from left to right. So, for example, 3 + 5 + 4 = (3 + 5) + 4.A right-associative

02 7090 ch01 7/16/04 8:44 AM Page 19

20 Chapter 1 The Basics of PHP

operation, on the other hand, is executed from right to left: $a += $b += 10 is equiva-
lent to $a += ($b += 10).There are also some non-associative operations, such as com-
parisons. If two non-associative operations are on the same level of an expression, an
error is produced. (If you think about it, an expression such as $a <= $b >= $c makes
no sense in the context of a PHP script because the concept of “between” is not defined
in the language.You would, in fact, have to rewrite that as ($a <= $b) && ($b >=
$c).) Table 1.1 shows a list of operator precedences and associativity. Note that some of
the operators will be introduced in Chapters 2 and 4.

Table 1.1 Operator Precedence

Associativity Operator

right [

right ! ~ ++ — (int) (float)

(string) (array) (object) @

left * / %

left << >>

non-associative < <= > >=

non-associative == != === !==

left &

left ^

left |

left &&

left ||

left ? :

right = += -= *= /= .= %= &= |= ^=

<<= >>=

right print

left and

left xor

left or

left ,

As you have probably noticed, the logical operators && and || have a different prece-
dence than and and or.This is an important bit of information that you should keep in
mind while reading through PHP code.

Operator precedence can be overridden by using parentheses. For example,

10 * 5 + 2 = 52

10 & (5 + 2) = 70

Parentheses can be nested to an arbitrary number of levels—but, of course, the number
of parentheses in an expression must be balanced.

02 7090 ch01 7/16/04 8:44 AM Page 20

21Conditional Structures

Conditional Structures
It is often necessary, at some point, to change the execution of a script based on one or
more conditions. PHP offers a set of structures that can be used to control the flow of
execution as needed.

The simplest such structure is the if-then-else statement:

if (condition1)

code-block-1

[else

code-block-2...]

The series of commands code-block-1 is executed if condition1 can be evaluated to
the Boolean value True, whereas code-block-2 is executed if condition1 can be evalu-
ated to False. For example,

<?php

$a = 10;

if ($a < 100)

echo ‘Less than 100’;

else

echo ‘More than 100’;

?>

In this case, the value of $a is obviously less than one hundred and, therefore, the first
block of code will be executed, outputting Less than 100.

Clearly, if you could only include one instruction in every block of code, PHP would
be extremely inefficient. Luckily, multiple instructions can be enclosed within braces:

<?php

$a = 10;

if ($a < 100)

{

echo ‘Less than 100’;

echo “\nNow I can output more than one line!”;

}

else

echo ‘More than 100’;

?>

02 7090 ch01 7/16/04 8:44 AM Page 21

22 Chapter 1 The Basics of PHP

if-then-else statements can be nested to an arbitrary level. PHP even supports a spe-
cial keyword, elseif, that makes this process easier:

<?php

$a = 75;

if ($a > 100)

{

echo ‘More than 100’;

echo “Now I can output more than one line!”;

}

elseif ($a > 50)

echo ‘More than 50’;

else

echo “I don’t know what it is”;

?>

In this case, the first condition ($a > 100) will not be satisfied.The execution point
will then move on to the second condition, ($a > 50), which will be satisfied, causing
the interpreter to output More than 50.

Alternative if-then-else Syntax
As an alternative to the if-then-else syntax described in the previous section, which is
what you will see in most modern PHP programs, PHP supports a different syntax in
which code blocks start with a semicolon and end with the keyword endif:

<?php

$a = 10;

if ($a < 100):

echo ‘Less than 100’;

echo “Now I can output more than one line!”;

elseif ($a < 50):

echo ‘Less than fifty’;

else:

echo “I don’t know what it is”;

endif

?>

Short-form if-then-else
A simple if-then-else statement can actually be written using a ternary operator (and,
therefore, inserted directly into a more complex operation):

02 7090 ch01 7/16/04 8:44 AM Page 22

23Conditional Structures

<?

$n = 15;

$a = ($n % 2 ? ‘odd number’ : ‘even number’);

echo $a;

?>

As you can see, the ternary operator’s syntax is

(condition ? value_if_true : value_if_false)

In the specific case here, the value_if_true is returned by the expression if condition
evaluates to True; otherwise, value_if_false is returned instead.

The case Statement
A complex if-then-else statement, composed of an arbitrary number of conditions all
based on the same expression being compared to a number of immediate values, can
actually be replaced by a case statement as follows:

<?php

$a = 10;

switch ($a)

{

case ‘1’:

echo ‘1’;

break;

case ‘5’:

echo ‘Five’;

break;

case ‘Ten’:

echo ‘String 10’;

break;

case 10:

echo ‘10’;

break;

02 7090 ch01 7/16/04 8:44 AM Page 23

24 Chapter 1 The Basics of PHP

default:

echo ‘I don\’t know what to do’;

break;

}

?>

When the interpreter encounters the switch keyword, it evaluates the expression that
follows it and then compares the resulting value with each of the individual case condi-
tions. If a match is found, the code is executed until the keyword break or the end of
the switch code block is found, whichever comes first. If no match is found and the
default code block is present, its contents are executed.

Note that the presence of the break statement is essential—if it is not present, the
interpreter will continue to execute code in to the next case or default code block,
which often (but not always) isn’t what you want to happen.You can actually turn this
behavior to your advantage to simulate a logical or operation; for example, this code

<?php

if ($a == 1 || $a == 2)

{

echo ‘test one’;

}

else

{

echo ‘test two’;

}

?>

Could be rewritten as follows:
<?php

switch ($a)

{

case 1:

case 2:

echo ‘test one’;

break;

default:

echo ‘test two’;

break;

}

?>

02 7090 ch01 7/16/04 8:44 AM Page 24

25Iteration and Loops

Once inside the switch statement, a value of 1 or 2 will cause the same actions to take
place.

Iteration and Loops
Scripts are often used to perform repetitive tasks.This means that it is sometimes neces-
sary to cause a script to execute the same instructions for a number of times that
might—or might not—be known ahead of time. PHP provides a number of control
structures that can be used for this purpose.

The while Structure
A while statement executes a code block until a condition is set:

<?php

$a = 10;

while ($a < 100)

{

$a++;

}

?>

Clearly, you can use a condition that can never be satisfied—in which case, you’ll end up
with an infinite loop. Infinite loops are usually not a good thing, but, because PHP pro-
vides the proper mechanism for interrupting the loop at any point, they can also be use-
ful. Consider the following:

<?php

$a = 10;

$b = 50;

while (true)

{

$a++;

if ($a > 100)

{

$b++;

if ($b > 50)

{

break;

}

}

}

?>

02 7090 ch01 7/16/04 8:44 AM Page 25

26 Chapter 1 The Basics of PHP

In this script, the (true) condition is always satisfied and, therefore, the interpreter will
be more than happy to go on repeating the code block forever. However, inside the code
block itself, we perform two if-then checks, and the second one is dependent on the first
so that the $b > 50 will only be evaluated after $a > 100, and, if both are true, the
break statement will cause the execution point to exit from the loop into the preceding
scope. Naturally, we could have written this loop just by using the condition ($a <=
100 && $b <= 50) in the while loop, but it would have been less efficient because we’d
have to perform the check twice. (Remember, $b doesn’t increment unless $a is greater
than 100.) If the second condition were a complex expression, our script’s performance
might have suffered.

The do-while Structure
The big problem with the while() structure is that, if the condition never evaluates to
True, the statements inside the code block are never executed.

In some cases, it might be preferable that the code be executed at least once, and then
the condition evaluated to determine whether it will be necessary to execute it again.
This can be achieved in one of two ways: either by copying the code outside of the
while loop into a separate code block, which is inefficient and makes your scripts more
difficult to maintain, or by using a do-while loop:

<?php

$a = 10;

do

{

$a++;

}

while ($a < 10);

?>

In this simple script, $a will be incremented by one once—even if the condition in the
do-while statement will never be true.

The for Loop
When you know exactly how many times a particular set of instructions must be repeat-
ed, using while and do-while loops is a bit inconvenient. For this purpose, for loops are
also part of the arsenal at the disposal of the PHP programmer:

<?php

for ($i = 10; $i < 100; $i++)

{

02 7090 ch01 7/16/04 8:44 AM Page 26

27Iteration and Loops

echo $i;

}

?>

As you can see, the declaration of a for loop is broken in to three parts:The first is used
to perform any initialization operations needed and is executed only once before the loop
begins.The second represents the condition that must be satisfied for the loop to contin-
ue. Finally, the third contains a set of instructions that are executed once at the end of
every iteration of the loop before the condition is tested.

A for loop could, in principle, be rewritten as a while loop. For example, the previ-
ous simple script can be rewritten as follows:

<?php

$i = 10;

while ($i < 100)

{

echo $i;

$i++;

}

?>

As you can see, however, the for loop is much more elegant and compact.
Note that you can actually include more than one operation in the initialization and

end-of-loop expressions of the for loop declaration by separating them with a comma:

<?php

for ($i = 1, $c = 2; $i < 10; $i++, $c += 2)

{

echo $i;

echo $c;

}

?>

Naturally, you can also create a for loop that is infinite—in a number of ways, in fact.
You could omit the second expression from the declaration, which would cause the
interpreter to always evaluate the condition to true.You could omit the third expression
and never perform any actions in the code block associated with the loop that will cause
the condition in the second expression to be evaluated as true.You can even omit all
three expressions using the form for(;;) and end up with the equivalent of
while(true).

02 7090 ch01 7/16/04 8:44 AM Page 27

28 Chapter 1 The Basics of PHP

Continuing a Loop
You have already seen how the break statement can be used to exit from a loop.What
if, however, you simply want to skip until the end of the code block associated with the
loop and move on to the next iteration?

In that case, you can use the continue statement:

<?php

for ($i = 1, $c = 2; $i < 10; $i++, $c += 2)

{

if ($c < 10)

continue;

echo ‘I\’ve reached 10!’;

}

?>

If you nest more than one loop, you can actually even specify the number of loops that
you want to skip and move on from:

<?php

for ($i = 1, $c = 2; $i < 10; $i++, $c += 2)

{

$b = 0;

while ($b < 199) {

if ($c < 10)

continue 2;

echo ‘I\’ve reached 10!’;

}

}

?>

In this case, when the execution reaches the inner while loop, if $c is less than 10, the
continue 2 statement will cause the interpreter to skip back two loops and start over
with the next iteration of the for loop.

Functions and Constructs
The code that we have looked at up to this point works using a very simple top-down
execution style:The interpreter simply starts at the beginning and works its way to the
end in a linear fashion. In the real world, this simple approach is rarely practical; for
example, you might want to perform a certain operation more than once in different
portions of your code.To do so, PHP supports a facility known as a function.

02 7090 ch01 7/16/04 8:44 AM Page 28

29Functions and Constructs

Functions must be declared using the following syntax:

function function_name ([param1[, paramn]])

As you can see, each function is assigned a name and can receive one or more parame-
ters.The parameters exist as variables throughout the execution of the entire function.

Let’s look at an example:

<?php

function calc_weeks ($years)

{

return $years * 52;

}

$my_years = 28;

echo calc_weeks ($my_years);

?>

The $years variable is created whenever the calc_weeks function is called and initial-
ized with the value passed to it.The return statement is used to return a value from the
function, which then becomes available to the calling script.You can also use return to
exit from the function at any given time.

Normally, parameters are passed by value—this means that, in the previous example, a
copy of the $my_years variable is placed in the $years variable when the function
begins, and any changes to the latter are not reflected in the former. It is, however, possi-
ble to force passing a parameter by reference so that any changes performed within the
function to it will be reflected on the outside as well:

<?php

function calc_weeks (&$years)

{

$my_years += 10;

return $my_years * 52;

}

$my_years = 28;

echo calc_weeks ($my_years);

?>

You can also assign a default value to any of the parameters of a function when declaring
it.This way, if the caller does not provide a value for the parameter, the default one will
be used instead:

02 7090 ch01 7/16/04 8:44 AM Page 29

30 Chapter 1 The Basics of PHP

<?php

function calc_weeks ($my_years = 10)

{

return $my_years * 52;

}

echo calc_weeks ();

?>

In this case, because no value has been passed for $my_years, the default of 10 will be
used by the interpreter. Note that you can’t assign a default value to a parameter passed
by reference.

Functions and Variable Scope
It’s important to note that there is no relationship between the name of a variable
declared inside a function and any corresponding variables declared outside of it. In PHP,
variable scope works differently from most other languages so that what resides in the
global scope is not automatically available in a function’s scope. Let’s look at an example:

<?php

function calc_weeks ()

{

$years += 10;

return $years * 52;

}

$years = 28;

echo calc_weeks ();

?>

In this particular case, the script assumes that the $years variable, which is part of the
global scope, will be automatically included in the scope of calc_weeks(). However, this
does not take place, so $years has a value of Null inside the function, resulting in a
return value of 0.

If you want to import global variables inside a function’s scope, you can do so by
using the global statement:

<?php

function calc_weeks ()

{

global $years;

02 7090 ch01 7/16/04 8:44 AM Page 30

31Functions and Constructs

$years += 10;

return $years * 52;

}

$years = 28;

echo calc_weeks ();

?>

The $years variable is now available to the function, where it can be used and modi-
fied. Note that by importing the variable inside the function’s scope, any changes made
to it will be reflected in the global scope as well—in other words, you’ll be accessing the
variable itself, and not an ad hoc copy as you would with a parameter passed by value.

Functions with Variable Parameters
It’s sometimes impossible to know how many parameters are needed for a function. In
this case, you can create a function that accepts a variable number of arguments using a
number of functions that PHP makes available for you:

n func_num_args() returns the number of parameters passed to a function.
n func_get_arg($arg_num) returns a particular parameter, given its position in the

parameter list.
n func_get_args() returns an array containing all the parameters in the parameter

list.

As an example, let’s write a function that calculates the arithmetic average of all the
parameters passed to it:

<?php

function calc_avg()

{

$args = func_num_args();

if ($args == 0)

return 0;

$sum = 0;

for ($i = 0; $i < $args; $i++)

$sum += func_get_arg($i);

return $sum / $args;

}

echo calc_avg (19, 23, 44, 1231, 2132, 11);

?>

02 7090 ch01 7/16/04 8:44 AM Page 31

32 Chapter 1 The Basics of PHP

As you can see, we start by determining the number of arguments and exiting immedi-
ately if there are none.We need to do so because otherwise the last instruction would
cause a division-by-zero error. Next, we create a for loop that simply cycles through
each parameter in sequence, adding its value to the sum. Finally, we calculate and return
the average value by dividing the sum by the number of parameters. Note how we
stored the value of the parameter count in the $args variable—we did so in order to
make the script a bit more efficient because otherwise we would have had to perform a
call to func_get_args() for every cycle of the for loop. That would have been rather
wasteful because a function call is quite expensive in terms of performance and the
number of parameters passed to the function does not change during its execution.

Variable Variables and Variable Functions
PHP supports two very useful features known as “variable variables” and “variable func-
tions.”

The former allows you use the value of a variable as the name of a variable. Sound
confusing? Look at this example:

<?

$a = 100;

$b = ‘a’;

echo $$b;

?>

When this script is executed and the interpreter encounters the $$b expression, it first
determines the value of $b, which is the string a. It then reevaluates the expression with
a substituted for $b as $a, thus returning the value of the $a variable.

Similarly, you can use a variable’s value as the name of a function:

<?

function odd_number ($x)

{

echo “$x is odd”;

}

function even_number ($x)

{

echo “$x is even”;

}

$n = 15;

$a = ($n % 2 ? ‘odd_number’ : ‘even_number’);

02 7090 ch01 7/16/04 8:44 AM Page 32

33Exam Prep Questions

$a($n);

?>

At the end of the script, $a will contain either odd_number or even_number.The expres-
sion $a($n) will then be evaluated as a call to either odd_number() or even_number().

Variable variables and variable functions can be extremely valuable and convenient.
However, they tend to make your code obscure because the only way to really tell what
happens during the script’s execution is to execute it—you can’t determine whether
what you have written is correct by simply looking at it.As a result, you should only
really use variable variables and functions when their usefulness outweighs the potential
problems that they can introduce.

Exam Prep Questions
1. What will the following script output?

<?php

$x = 3 - 5 % 3;

echo $x;

?>

A. 2

B. 1

C. Null

D. True

E. 3

Answer B is correct. Because of operator precedence, the modulus operation is
performed first, yielding a result of 2 (the remainder of the division of 5 by 2).
Then, the result of this operation is subtracted from the integer 3.

2. Which data type will the $a variable have at the end of the following script?

<?php

$a = “1”;

echo $x;

?>

02 7090 ch01 7/16/04 8:44 AM Page 33

34 Chapter 1 The Basics of PHP

A. (int) 1

B. (string) “1”

C. (bool) True

D. (float) 1.0

E. (float) 1

Answer B is correct.When a numeric string is assigned to a variable, it remains
a string, and it is not converted until needed because of an operation that
requires so.

3. What will the following script output?

<?php

$a = 1;

$a = $a— + 1;

echo $a;

?>

A. 2

B. 1

C. 3

D. 0

E. Null

Answer A is correct.The expression $a— will be evaluated after the expression $a
= $a + 1 but before the assignment.Therefore, by the time $a + 1 is assigned to
$a, the increment will simply be lost.

02 7090 ch01 7/16/04 8:44 AM Page 34

2
Object-Oriented PHP

DESPITE BEING A RELATIVELY RECENT—and often maligned—addition to the comput-
er programming world, object-oriented programming (OOP) has rapidly taken hold as
the programming methodology of choice for the enterprise.

The basic concept behind OOP is encapsulation—the grouping of data and code ele-
ments that share common traits inside a container known as a class. Classes can be organ-
ized hierarchically so that any given one can inherit some or all the characteristics of
another one.This way, new code can build on old code, making for more stable and reli-
able code (at least, in theory).

Because it was added by the designers almost as an afterthought, the implementation
of OOP in PHP 4 differs from the traditional implementations provided by most other
languages in that it does not follow the traditional tenets of object orientation and is,
therefore, fraught with peril for the programmer who approaches it coming from a more
traditional platform.

Terms You’ll Need to Understand
n Namespace
n Class
n Object
n Method
n Property
n Class member
n Instantiation
n Constructor
n Inheritance
n Magic function

03 7090 ch02 7/16/04 8:45 AM Page 35

36 Chapter 2 Object-Oriented PHP

Techniques You’ll Need to Master
n OOP fundamentals
n Writing classes
n Instantiating objects
n Accessing class members
n Creating derivate classes
n Serializing and unserializing objects

Getting Started
As we mentioned previously, the basic element of OOP is the class.A class contains the
definition of data elements (or properties) and functions (or methods) that share some com-
mon trait and can be encapsulated in a single structure.

In PHP, a class is declared using the class construct:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

$this->my_var = $my_var;

}

}

?>

As you can see here, the class keyword is followed by the name of the class, my_class
in our case, and then by a code block where a number of properties and methods are
defined.

Data properties are defined by using the var keyword followed by the name of the
variable.You can even assign a value to the property by using the following syntax:

var $my_var = ‘a value’;

Following property declarations, we define a method, which in this special case has the
same name as the class.This designates it as the class’ constructor—a special method that is
automatically called by the interpreter whenever the class is instantiated.

You’ll notice that, inside the constructor, the value of the $var parameter is assigned
to the $my_var data property by using the syntax $this->my_var = $var.The $this

03 7090 ch02 7/16/04 8:45 AM Page 36

37Classes as Namespaces

variable is a reference to the current object that is only available from within the meth-
ods of a particular class.You can use it to access the various methods and properties of
the class.Thus, $this means “the current instance of the class,” whereas the -> indirec-
tion operator informs the interpreter that you’re trying to access a property or method
of the class.As you can imagine, methods are accessed as $this->method().

Instantiating a Class: Objects
You cannot use a class directly—it is, after all, nothing more than the declaration of a
special kind of data type.What you must do is to actually instantiate it and create an
object.This can be done by using the new operator, which has the highest possible
precedence:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

$this->my_var = $my_var;

}

}

$obj = new my_class (“something”);

echo $obj->my_var;

?>

The new operator causes a new instance of the my_class class to be created and assigned
to $obj. Because my_class has a constructor, the object’s instantiation automatically calls
it, and we can pass parameters to it directly.

From this point on, properties and methods of the object can be accessed using a syn-
tax similar to the one that we saw in the previous section except, of course, that $this
doesn’t exist outside the scope of the class itself, and instead we must use the name of
the variable to which we assigned the object.

Classes as Namespaces
After a class is defined, its methods can be accessed in one of two ways: dynamically, by
instatiating an object, or statically, by treating the class as a namespace. Essentially, name-
spaces are nothing more than containers of methods:

03 7090 ch02 7/16/04 8:45 AM Page 37

38 Chapter 2 Object-Oriented PHP

<?php

class base_class

{

var $var1;

function base_class ($value)

{

$this->var1 = $value;

}

function calc_pow ($base, $exp)

{

return pow ($base, $exp);

}

}

echo base_class::calc_pow (3, 4);

?>

As you can see in the previous example, the :: operator can be used to statically address
one of the methods of a class and execute it. Grouping a certain number of methods
into a class and then using that class as a namespace can make it easier to avoid naming
conflicts in your library, but, generally speaking, that’s not reason enough by itself to jus-
tify the overhead caused by using classes.

Objects and References
The biggest problem working with objects is passing them around to function calls.This
is because objects behave in exactly the same way as every other data type: By default,
they are passed by value. Unlike most other values, however, you will almost always cause
an object to be modified when you use it.

Let’s take a look at an example:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

global $obj_instance;

03 7090 ch02 7/16/04 8:45 AM Page 38

39Objects and References

$obj_instance = $this;

$this->my_var = $var;

}

}

$obj = new my_class (“something”);

echo $obj->my_var;

echo $obj_instance->my_var;

?>

As you can see, the constructor here assigns the value of $this to the global variable
$obj_instance.When the value of $obj_instance->my_var is printed out later in the
script, however, the expected something doesn’t show up—and the property actually has
a value of NULL.

To understand why, you need to consider two things. First, when $this is assigned to
$obj_instance, it is assigned by value, and this causes PHP to actually create a copy of
the object so that when $var is assigned to $this->my_var, there no longer is any con-
nection between the current object and what is stored in $obj_instance.

You might think that assigning $this by reference might make a difference:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

global $obj_instance;

$obj_instance = &$this;

$this->my_var = $var;

}

}

$obj = new my_class (“something”);

echo $obj->my_var;

echo $obj_instance->my_var;

?>

Unfortunately, it doesn’t—as much as this might seem extremely odd, you’ll find the fol-
lowing even stranger:

03 7090 ch02 7/16/04 8:45 AM Page 39

40 Chapter 2 Object-Oriented PHP

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

global $obj_instance;

$obj_instance[] = &$this;

$this->my_var = $var;

}

}

$obj = new my_class (“something”);

echo $obj->my_var;

echo $obj_instance[0]->my_var;

?>

Assigning a reference to $this to a scalar variable hasn’t helped, but by making
$obj_instance an array, the reference was properly passed.The main problem here is
that the $this variable is really a special variable built ad hoc for the internal use of the
class—and you really shouldn’t rely on it being used for anything external at all.

Even though this solution seems to work, incidentally, it really didn’t.Try this:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

global $obj_instance;

$obj_instance[] = &$this;

$this->my_var = $var;

}

}

$obj = new my_class (“something”);

$obj->my_var = “nothing”;

03 7090 ch02 7/16/04 8:45 AM Page 40

41Objects and References

echo $obj->my_var;

echo $obj_instance[0]->my_var;

?>

If $obj_instance had really become a reference to $obj, we would expect a change to
the latter to be reflected also in the former. However, as you can see if you run the pre-
ceding script, after we have changed the value of $obj->my_var to nothing,
$obj_instance still contains the old value.

How is this possible? Well, the problem is in the fact that $obj was created with a
simple assignment. So what really happened is that new created a new instance of
my_class, and a reference to that instance was assigned to $obj_instance by the con-
structor.When the instance was assigned to $obj, however, it was assigned by value—
therefore, a copy was created, leading to the two variables holding two distinct copies of
the same object. In order to obtain the effect we were looking for, we have to change
the assignment so that it, too, is done by reference:

<?php

class my_class

{

var $my_var;

function my_class ($var)

{

global $obj_instance;

$obj_instance[] = &$this;

$this->my_var = $var;

}

}

$obj = &new my_class (“something”);

$obj->my_var = “nothing”;

echo $obj->my_var;

echo $obj_instance[0]->my_var;

?>

Now, at last, $obj_instance is a proper reference to $obj.
Generally speaking, this is the greatest difficulty that faces the user of objects in PHP.

Because they are treated as normal scalar values, you must assign them by reference
whenever you pass them along to a function or assign them to a variable.

03 7090 ch02 7/16/04 8:45 AM Page 41

42 Chapter 2 Object-Oriented PHP

Naturally, you can turn this quirk in PHP 4 to your advantage as well by using a by-
value assignment whenever you want to make a copy of an object. Be careful, however,
that even the copy operation might not be what you expect. For example, if your object
includes one or more variables that contain resources, only the variables will be duplicat-
ed, not the resources themselves.This difference is subtle, but very important because the
underlying resources will remain the same so that when they are altered by one object,
the changes will be reflected in the copy as well.

Implementing Inheritance
Classes can gain each other’s properties and methods through a process known as inheri-
tance. In PHP, inheritance is implemented by “extending” a class:

<?php

class base_class

{

var $var1;

function base_class ($value)

{

$this->var1 = $value;

}

function calc_pow ($exp)

{

return pow ($this->var1, $exp);

}

}

class new_class extends base_class

{

var $var2;

function new_class ($value)

{

$this->var2 = $value;

$this->var1 = $value * 10;

}

}

$obj = new new_class (10);

echo $obj->calc_pow (4);

?>

03 7090 ch02 7/16/04 8:45 AM Page 42

43Implementing Inheritance

As you can see here, the extends keyword is used to add the methods and properties of
the base class base_class to new_class, which defines new variables and a new con-
structor.The calc_pow function, which is defined in the base class, becomes immediately
available to the new class and can be called as if it were one of its methods.

Note, however, that only the constructor for the new class is called—the old class’ is
completely ignored.This might not be always what you want—in which case, you can
access each of the parent’s methods statically through the parent built-in namespace that
PHP defines for you inside your object:

<?php

class base_class

{

var $var1;

function base_class ($value)

{

$this->var1 = $value;

}

function calc_pow ($exp)

{

return pow ($this->var1, $exp);

}

}

class new_class extends base_class

{

var $var2;

function new_class ($value)

{

$this->var2 = $value;

parent::base_class($value);

}

}

$obj = new new_class (10);

echo $obj->calc_pow (4);

?>

In this example, the parent constructor is called by the new constructor as if it were a
normal static function, although the former will have at its disposal all of its normal
methods and properties.

03 7090 ch02 7/16/04 8:45 AM Page 43

44 Chapter 2 Object-Oriented PHP

The great advantage of inheritance is that it provides a simple mechanism for extend-
ing the capabilities of your code in a gradual way without having to rewrite loads of
code every time.

Magic Functions: Serializing Objects
You might sometimes want objects to be passed along between different calls to your
scripts—for example, from one page to the next. One way to do so is to use a process
known as “serialization” in which the contents of the object are saved and then the
object is re-created by reversing the process.

In PHP, this can be performed automatically by PHP by simply saving all the object’s
properties and then storing them back in the object when it is rebuilt. In some cases,
however, this is not what you might want. For example, one of your properties could be
a file resource—in which case, you would have to close the file when the object is serial-
ized and then open it again when it is unserialized.

In these instances, PHP can’t do the job for you, but you can implement two “magic”
functions to do whatever you need on an ad hoc basis:

<?php

class base_class

{

var $var1;

var $var2;

function base_class ($value)

{

$this->var1 = $value;

$this->var2 = $value * 100;

}

function calc_pow ($exp)

{

return pow ($var1, $exp);

}

function __sleep()

{

// Return an array that contains

// the name of all the variables to be saved

return array (‘var1’);

}

function __wakeup()

{

03 7090 ch02 7/16/04 8:45 AM Page 44

45Exam Prep Questions

// Reconstruct $var2

$this->var2 = $this->var1 * 100;

}

}

?>

As you can see, the __sleep function is called whenever an object is serialized. It returns
an array that contains the names (minus the dollar sign) of all the data members that
must be saved. In our case, base_class::var2 is actually derived directly from the value
of base_class::var1, so we don’t want to save it.When the object is unserialized, the
interpreter will call __wakeup() in which we take the opportunity to rebuild $var2
with the appropriate value.

Exam Prep Questions
1. What will the following script output?

<?php

class a

{

var $c;

function a ($pass)

{

$this->c = $pass;

}

function print_data()

{

echo $this->$c;

}

}

$a = new a(10);

$a->print_data();

?>

A. An error

B. 10

C. “10”

D. Nothing

E. A warning

03 7090 ch02 7/16/04 8:45 AM Page 45

46 Chapter 2 Object-Oriented PHP

Answer D is correct.There actually is a bug in the print_data() function—
$this->$c is interpreted as a variable by PHP, and because the $c variable is not
defined inside the function, no information will be available for printing. Note
that if error reporting had been turned on, either through a php.ini setting or
through an explicit call to error_reporting(), two warnings would have been
outputted instead—but, unless the exam question tells you otherwise, you should
assume that the normal PHP configuration is being used.And in that case, the
interpreter is set not to report warnings.

2. When serializing and unserializing an object, which of the following precautions
should you keep in mind? (Choose two)

A. Always escape member properties that contain user input.

B. If the object contains resource variables, use magic functions to restore the
resources upon unserialization.

C. Use the magic functions to only save what is necessary.

D. Always use a transaction when saving the information to a database.

E. If the object contains resource variables, it cannot be serialized without first
destroying and releasing its resources.

Answers B and C are correct.Whenever you design an object that is meant to be
serialized or that can contain resource objects, you should implement the appro-
priate magic functions to ensure that it is serialized and unserialized properly—and
using the smallest amount of information possible.

3. What will the following script output?

<?php

error_reporting(E_ALL);

class a

{

var $c;

function a()

{

$this->c = 10;

}

}

class b extends a

{

03 7090 ch02 7/16/04 8:45 AM Page 46

47Exam Prep Questions

function print_a()

{

echo $this->c;

}

}

$b = new b;

$b->print_a();

?>

A. Nothing

B. An error because b does not have a constructor

C. 10

D. NULL

E. False

Answer C is correct. Because the class b does not have a constructor, the construc-
tor of its parent class is executed instead.This results in the value 10 being assigned
to the $c member property.

03 7090 ch02 7/16/04 8:45 AM Page 47

03 7090 ch02 7/16/04 8:45 AM Page 48

3
PHP and the Web

Terms You’ll Need to Understand
n Server-side
n Client-side
n Hypertext Transfer Protocol (HTTP)
n GET request
n POST request
n Superglobal array
n HTTP header
n Cookie
n Session
n Session identifier

Techniques You’ll Need to Master
n Distinguishing between server-side and client-side
n Handling form data using superglobal arrays
n Working with cookies
n Persisting data in sessions

04 7090 ch03 7/16/04 8:44 AM Page 49

50 Chapter 3 PHP and the Web

Server-side Versus Client-side
One of the keys to understanding PHP’s role in the Web is to understand how the Web
works at a fundamental level.This generally involves a basic understanding of HTTP,
Hypertext Transfer Protocol.To examine the basic operation of the Web, consider a
typical HTTP client, your Web browser.When you visit a URL such as http://exam-
ple.org/, your browser sends an HTTP request to the web server at example.org.The
simplest example of this request is as follows:

GET / HTTP/1.1

Host: example.org

The web server’s responsibility is to respond to this request, preferably with the resource
that is desired (the document root in this example).An example of a response is as
follows:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 419

<html>

<head><title>Example Web Page</title></head>

<body>

<p>You have reached this web page by typing "example.com",

"example.net", or "example.org" into your web browser.</p>

<p>These domain names are reserved for use in documentation and are not

available for registration. See

RFC 2606, Section

3.</p>

</body>

</html>

As you should notice, the majority of this response is the actual content, the HTML.
When your browser receives this response, it will render the web page (see Figure 3.1).
Once a page is rendered, you can disconnect your computer from the Internet, and this
won’t cause a problem until your browser needs to send another HTTP request.

Where does PHP fit into this process? PHP’s role is best explained as an aid to the
web server while it is generating the HTTP response.Thus, by the time the web server
sends the response, PHP’s job is done. Its output is included in the response. Because
PHP’s activity takes place on the server, it is an example of a server-side technology.

By contrast, any processing that takes place after the browser has received the response
is referred to as client-side. JavaScript is a popular choice for client-side scripting.You’re
probably familiar with using JavaScript or at least seeing it when you view the source of
a web page.This is a distinguishing characteristic.What you see when you view the
source of a web page is the content of the HTTP request.This content can be generated
on the server, so just as PHP can be used to generate HTML, it can also generate
JavaScript.

04 7090 ch03 7/16/04 8:44 AM Page 50

51HTML Forms

Figure 3.1 A browser renders a web page.

JavaScript executes on the client.Thus, interacting with PHP is much more difficult
because it requires another HTTP request to be sent.After all, PHP’s job is done, and
the web server is quietly awaiting the next request. By the time JavaScript executes, there
isn’t even a connection between the Web client (your browser) and the web server any-
more.

If you find yourself having trouble determining whether you can pass data from PHP
to JavaScript or from JavaScript to PHP, it would be wise to review this section a few
times.A clear understanding of the environment in which PHP operates, and the dis-
tinction between client-side and server-side technologies, is important.

HTML Forms
One task with which you should already be familiar is processing HTML forms. Forms
provide a convenient way for users to send data to the server, and this makes the Web
much more interactive. PHP makes processing these forms easy for developers; the form
data is available in the $_GET and $_POST superglobal arrays, depending on the method
used in the form (which in turn affects the request method used by the browser). In
addition, $_REQUEST is a method-agnostic array that you can use to access form data
(basically a merge of both $_GET and $_POST).

Superglobal arrays are available in every scope, which makes them convenient to use.
For example, you might use them in a function without having to declare them as glob-
al, and there is no need to ever pass them to a function.They are always available.

For versions of PHP prior to 4.1.0, you must use a different set of arrays because
$_GET, $_POST, and $_REQUEST are not available. Instead, you must use $_HTTP_GET_VARS
and $_HTTP_POST_VARS (for $_GET and $_POST, respectively).There is no equivalent for
$_REQUEST (where both arrays are merged), and these are also not superglobals, so you
must use them similar to standard arrays.

04 7090 ch03 7/16/04 8:44 AM Page 51

52 Chapter 3 PHP and the Web

To illustrate how form data is passed, consider the following form:

<form action=”/process.php” method=”post”>

<input type=”text” name=”answer” />

<input type=”submit” />

</form>

Figure 3.2 shows how this form appears in a Web browser.

Figure 3.2 A browser renders an HTML form.

If a user enters C for the answer and submits the form, an HTTP request similar to the
following is sent to the web server:

POST /process.php HTTP/1.1

Host: example.org

Content-Type: application/x-www-form-urlencoded

Content-Length: 8

answer=C

As a PHP developer, you can reference this value as $_POST[‘answer’] because the
request method (indicated on the first line of the HTTP request) is POST.

By contrast, if the method of the form specifies the use of a GET request, the request
is similar to the following:

GET /process.php?answer=C HTTP/1.1

Host: example.org

Rather than passing the form data as the content of the request, it is passed as the query
string of the URL. In this situation, you can reference $_GET[‘answer’] to get the
user’s answer.

04 7090 ch03 7/16/04 8:44 AM Page 52

53HTML Forms

One important point about HTML forms is that the result of any form element is a
single name/value pair in the request.This is true for hidden form elements, radio but-
tons, checkboxes, and all other types. For example, consider the following form:

<form action=”/process.php” method=”post”>

<input type=”hidden” name=”answer” value=”C” />

<input type=”submit” />

</form>

Figure 3.3 shows how this form appears in a Web browser. Unlike the previous example,
the user is only presented with the submit button.As long as the user uses this form to
send the POST request, the value of $_POST[‘answer’] will always be C.The actual
request sent by the browser is identical to the previous example, thus it is impossible to
discern the type of HTML form used to generate a request by only observing the
request.

Figure 3.3 A browser renders an HTML form.

The behavior of some form elements can be confusing. Notably, elements such as check
boxes and radio buttons, because of their Boolean nature, are only included in the
request if selected.When selected, their value is determined by the value attribute given
in the HTML markup.Thus, the corresponding variable in PHP might or might not be
set, and you might want to use isset() on these types of elements to determine this.

There is also the special case in which multiple form elements are given the same
name, such as in the following example:

<form action=”/process.php” method=”post”>

<input type=”text” name=”answer” />

<input type=”text” name=”answer” />

<input type=”submit” />

</form>

04 7090 ch03 7/16/04 8:44 AM Page 53

54 Chapter 3 PHP and the Web

The browser will send a request similar to the following (assuming that the user answers
C and A, respectively):

POST /process.php HTTP/1.1

Host: example.org

Content-Type: application/x-www-form-urlencoded

Content-Length: 8

answer=C&answer=A

If you reference $_POST[‘answer’], you will notice that its value is A.Where did the
first answer go? As PHP processes the form for you and assigns variables within the
superglobal arrays, values can be overwritten. If this is not the desired behavior, there is a
simple naming convention you can use instead:

<form action=”/process.php” method=”post”>

<input type=”text” name=”answer[]” />

<input type=”text” name=”answer[]” />

<input type=”submit” />

</form>

By adding [] to the end of the form element name, you are asking PHP to create an
array for this particular element.Assuming that the same answers as before (C and A,
respectively) are entered before submitting the form, $_POST[‘answer’] is now an enu-
merated array, and the output of print_r($_POST[‘answer’]) is as follows:

Array

(

[0] => C

[1] => A

)

So, you now have both values preserved conveniently in an array.

Cookies
What are cookies? When described as entities, which is how cookies are often referenced
in conversation, you can be easily misled. Cookies are actually just an extension of the
HTTP protocol. Specifically, there are two additional HTTP headers: Set-Cookie and
Cookie.The operation of these cookies is best described by the following series of
events:

1. Client sends an HTTP request to server.

2. Server sends an HTTP response with Set-Cookie: foo=bar to client.

3. Client sends an HTTP request with Cookie: foo=bar to server.

4. Server sends an HTTP response to client.

04 7090 ch03 7/16/04 8:44 AM Page 54

55Cookies

Thus, the typical scenario involves two complete HTTP transactions. In step 2, the serv-
er is asking the client to return a particular cookie in future requests. In step 3, if the
user’s preferences are set to allow cookies, and if the cookie is valid for this particular
request, the browser requests the resource again but includes the cookie.

Hopefully this simple explanation already makes it clear why you cannot determine
whether a user’s preferences are set to allow cookies during the first request.When you
set a cookie in your PHP code, whether by using setcookie() or header(), all you are
doing is modifying the HTTP response to include a Set-Cookie header.You cannot,
during the time that you are generating this response, determine how the browser will
react.After all, the browser won’t even receive the response (and the Set-Cookie header)
until PHP has finished executing.

The Set-Cookie header, at a minimum, contains the name and value of the cookie.
For example,

Set-Cookie: foo=bar

Other attributes can be included to modify when the cookie is to be sent in a subse-
quent request.These optional attributes are as follows:

n domain—Restricts requests for which the cookie is sent to those that are within
the specified domain or in subdomains.The default is the domain of the current
resource.

n expires—A date after which the cookie is no longer valid and should be deleted.
The default is to persist the cookie in memory only, expiring it as soon as the
browser ends.

n path—Only requests for resources within the specified path include the cookie.
The default is no path restrictions.

n secure—An attribute with no value that indicates that the cookie should only be
sent in requests sent over a secure connection, such as SSL.

An example of a Set-Cookie header with all optional attributes is as follows:

Set-Cookie: foo=bar; domain=example.org; expires=Mon, 26 Jul 2004 12:34:56 GMT;

➥ path=/; secure

The Cookie header included in subsequent requests contains only the name and value of
the cookie:

Cookie: foo=bar

The attributes included in the Set-Cookie header are only used to determine whether
the cookie should be included in the request at all. If included, only the name and value
are given. In PHP, cookies sent in the request are made available in the $_COOKIE super-
global array (for PHP versions prior to 4.1.0, cookies are available in the $_HTTP_
COOKIE_VARS array).

04 7090 ch03 7/16/04 8:44 AM Page 55

56 Chapter 3 PHP and the Web

Sessions
One common use of cookies, and one of the main reasons behind their inception, is to
maintain state. Stated differently, cookies allow you to associate separate HTTP transac-
tions together by identifying a specific client.

If you set a cookie with a unique identifier, you can store information about the
client on the server, and on the next request from that same client, you can use the
cookie to identify the client and fetch the data that you stored.This technique is known
as session management, and it relies on the ability to maintain state.

PHP makes all of this easy with its built-in sessions.To initiate PHP’s sessions, simply
include the following function call on any PHP page:

session_start();

If you are using the default php.ini, this function requires PHP to manipulate some
HTTP headers, so you must call it prior to any output.After you have called this func-
tion, you can simply use the $_SESSION superglobal array to store and access session
variables. (For PHP versions prior to 4.1.0, $_HTTP_SESSION_VARS must be used
instead.) For example, the following code sets a session variable named foo:

$_SESSION[‘foo’] = ‘bar’;

PHP takes care of propagating the session identifier (the unique identifier used to distin-
guish each client from any other) in a cookie or on the URL, depending on your
php.ini settings, and it also takes care of storing and retrieving the session data.

Quite a few directives in php.ini affect sessions.The most notable ones are as fol-
lows:

n session.save_path—This indicates the directory in which PHP will store session
data.

n session.use_cookies—This is a Boolean that indicates whether PHP will use
cookies to propagate the session identifier.

n session.use_only_cookies—This is a Boolean that indicates whether PHP will
only check cookies for a session identifier (and not the URL).

n session.name—The name of the session (also used as the name of the session
identifier).

n session.auto_start—This is a Boolean that indicates whether PHP should
always enable session management, allowing you to avoid the call to
session_start().

n session.cookie_lifetime, session.cookie_path, session.cookie_domain—
These correspond to the attributes used in the Set-Cookie header for the session
identifier.

04 7090 ch03 7/16/04 8:44 AM Page 56

57Exam Prep Questions

n session.use_trans_sid—This is a Boolean that indicates whether PHP should
dynamically choose whether to propagate the session identifier via cookies or the
URL, depending on the user’s preferences. If cookies are enabled, PHP will use a
cookie; otherwise, it will use the URL. On the first page, PHP will use both
methods since it cannot yet determine whether the user’s preferences allow cook-
ies (recall the previous discussion on cookies).

By default, PHP stores session data on the filesystem. If you want to modify this behav-
ior, you can create your own session-handling functions for opening, closing, reading,
writing, deleting, and garbage collection.To instruct PHP to use your functions for these
session-related tasks, use session_set_save_handler() as follows:

session_set_save_handler (‘myopen’, ‘myclose’, ‘myread’, ‘mywrite’, ‘mydelete’,

➥ ‘mygarbage’);

This gives you complete flexibility over the behavior of the session management fea-
tures, and you still use sessions the same way (session_start() and using $_SESSION).
Thus, any existing code that uses standard session features will still work as expected.

Exam Prep Questions
1. Is it possible to pass data from PHP to JavaScript?

A. No, because PHP is server-side, and JavaScript is client-side.

B. No, because PHP is a loosely typed language.

C. Yes, because JavaScript executes before PHP.

D. Yes, because PHP can generate valid JavaScript.

Answer D is correct. JavaScript, like HTML, can be dynamically generated by
PHP.Answers A and B are incorrect because the answer is yes.Answer C is incor-
rect because PHP executes before JavaScript.

2. Is it possible to pass data from JavaScript to PHP?

A. Yes, but not without sending another HTTP request.

B. Yes, because PHP executes before JavaScript.

C. No, because JavaScript is server-side, and PHP is client-side.

D. No, because JavaScript executes before PHP.

Answer A is correct.Although your instincts might lead you to believe that you
cannot pass data from JavaScript to PHP, such a thing can be achieved with anoth-
er HTTP request.Answer B is incorrect because PHP executing before JavaScript
is not what makes this possible.This is actually the characteristic that might lead
you to believe (incorrectly) that the answer is no.Answers C and D are incorrect
because the answer is yes, but also because the explanations given are false.

04 7090 ch03 7/16/04 8:44 AM Page 57

58 Chapter 3 PHP and the Web

3. Which types of form elements can be excluded from the HTTP request?

A. text, radio, and check box

B. text, submit, and hidden

C. submit and hidden

D. radio and check box

Answer D is correct.When not selected, both radio buttons and check boxes are
excluded from the HTTP request.Answer A and B are incorrect because text
boxes are always included in the request.Answer C is incorrect because hidden
form elements are always included.

4. When processing the form, what is the difference between a hidden form element
and a nonhidden one, such as a text box?

A. The hidden form element does not have a name.

B. There is no difference.

C. The hidden form element does not have a value.

D. The hidden form element is excluded from the request.

Answer B is correct.When processing a form, each form element is simply a
name/value pair within one of the superglobal arrays.Answers A and C are incor-
rect because hidden form elements can (and should) have both a name and a
value.Answer D is incorrect because hidden form elements are only excluded
from the user’s view, not from the HTTP request.

5. Which of the following form element names can be used to create an array in
PHP?

A. foo

B. [foo]

C. foo[]

D. foo[bar]

Answer C is correct. PHP will create an enumerated array called foo that contains
the values of all form elements named foo[] in the HTML form.Answers A, B,
and D are incorrect because any subsequent form elements of the same name will
overwrite the value in previous elements.

04 7090 ch03 7/16/04 8:44 AM Page 58

59Exam Prep Questions

6. When an expiration date is given in a Set-Cookie header, what is the resulting
behavior in subsequent requests?

A. If the expiration date has expired, the cookie is not included.

B. The behavior is the same; the expiration date is included in the Cookie
header, and you can access this information in the $_COOKIE superglobal
array.

C. The cookie persists in memory until the browser is closed.

D. The cookie is deleted and therefore not included in subsequent requests.

Answer A is correct.Answer B is incorrect because only the name and value of the
cookie are included in the Cookie header.Answer C is incorrect because setting
an expiration date causes a cookie to either be deleted (if the date has expired) or
written to disk.Answer D is incorrect because the cookie is only deleted if the
date has expired, which isn’t necessarily the case.

7. If you set a cookie with either setcookie() or header(), you can immediately
check to see whether the client accepted it.

A. True, you can check the $_COOKIE superglobal array to see if it contains the
value you set.

B. True, but only if register_globals is enabled.

C. False, you can only use setcookie() if you need to test for acceptance.
Using header() does not work.

D. False, you must wait until you receive another HTTP request to determine
whether it includes the Cookie header.

Answer D is correct.The response that contains the Set-Cookie header is not sent
until PHP finishes executing, so you cannot test for acceptance prior to this.
Answers A and B are incorrect because the answer is false.Answer C is incorrect
because using setcookie() and header() both result in the same thing:A Set-
Cookie header is included in the response.

8. Why must you call session_start() prior to any output?

A. Because it is easy to forget if not placed at the top of your scripts.

B. Because you can no longer access the session data store after there has been
output.

C. Because session_start() sets some HTTP headers.

D. Because calling session_start() causes the HTTP headers to be sent.

Answer C is correct.Answer A is incorrect because this is a technical necessity, not
a best practice.Answer B is incorrect because accessing the session data store is
completely independent of whether there has been any output.Answer D is incor-
rect because you can set other HTTP headers after a call to session_start().

04 7090 ch03 7/16/04 8:44 AM Page 59

60 Chapter 3 PHP and the Web

9. Which of the following represents the proper way to set a session variable?

A. $_SESSION[‘foo’] = ‘bar’;

B. session_start();

C. session_set_save_handler (‘myopen’, ‘myclose’, ‘myread’,

‘mywrite’, ‘mydelete’, ‘mygarbage’);

D. $foo = $_SESSION[‘foo’];

Answer A is correct.Answer B is incorrect because session_start() only acti-
vates PHP sessions for the current script.Answer C is incorrect because
session_set_save_handler() allows you to override PHP’s default session
mechanism with your own custom functions.Answer D is incorrect; session data is
being used as the value of a regular variable and is not being manipulated in any
way.

10. Which of the following functions allows you to store session data in a database?

A. session_start();

B. session_set_save_handler();

C. mysql_query();

D. You cannot store session data in a database.

Answer B is correct.You can use session_set_save_handler() to override
PHP’s default session-handling functions and store session data any way you want.
Answer A is incorrect because session_start() only activates PHP sessions for
the current script.Answer C is incorrect because mysql_query() only executes a
query with MySQL and does not affect the behavior of PHP’s session mechanism.
Answer D is incorrect because this statement is false.

04 7090 ch03 7/16/04 8:44 AM Page 60

4
Arrays

AS MENTIONED BRIEFLY IN CHAPTER 1, “The Basics of PHP,” arrays are containers in
which an arbitrary number of other data elements can be stored. If you’re coming to
PHP from a language such as C, the concept of array that the former adopts will be a bit
different from what you’re used to.

Think of an array as a “collection” of heterogeneous values, each uniquely identified
by an arbitrary key, which can itself be either an integer numeric or string value.Thus,
for example, an array could contain a floating-point value, a string, a Boolean, and even
another array.

Although PHP will automatically provide a key for each value of the array if you
insert them sequentially, there doesn’t necessarily have to be any correlation between the
keys of each elements and the order in which they appear in the array—the first item
could have a key of “a string”, whereas the second could be 10, and so on.

Terms You’ll Need to Understand
n Array
n Key and value pairs
n Numeric arrays
n Associative arrays
n Multidimensional arrays
n Array navigation (or walking)
n Sorting
n Intersection and difference
n Data serialization

05 7090 ch04 7/16/04 8:43 AM Page 61

62 Chapter 4 Arrays

Techniques You’ll Need to Master
n Creating arrays
n Handling numeric and associative keys
n Creating and handling multidimensional arrays
n Sorting arrays
n Randomizing arrays
n Intersecting arrays
n Calculating the difference between one or more arrays
n Serializing arrays

Creating Arrays
The simplest way to create an array is to use the array function:

<?

$a = array (

‘l’ => 10,

‘11’ => “test”,

‘another element’

);

var_dump ($a);

?>

The array construct makes it possible to create an array while specifying the keys and
the value of each pair that belongs to it, as well as the order in which they are added to
it. In the specific case shown previously, the resulting array, as outputted by var_dump()
will be as follows:

array(3) {

[“l”]=>

int(10)

[11]=>

string(4) “test”

[12]=>

string(15) “another element”

}

05 7090 ch04 7/16/04 8:43 AM Page 62

63Creating Arrays

As you can see, the first element has a key of “l” and a value of 10.The second value
has a key of 11 even though we specified the string “11”.This is because PHP automati-
cally converts numeric strings into the corresponding integer value. Note that, unlike
what happens with string comparisons, a string value must actually be representable as an
integer in order to be converted automatically—thus, for example, the string “test”
does not create a key of 0.

The third value in the array has a key of 12 even though we did not specify one in
our call to array().This causes PHP to attempt and create a new key by itself by taking
the highest numeric key and adding one to it.There are, however, two exceptions to this
rule:

n If the array doesn’t contain any element with a numeric key, an element with a
key of 0 is selected instead.

n If the highest numeric key has a negative value, the new element will have a key
of 0. Note that is only true as of PHP 4.3.0—prior to that version, the new ele-
ment would have had a key equal to the highest numeric key plus one.

Using the Array Operator
The array operator [] is used to address an element of a particular array. For example,

<?

$a = array (

‘l’ => 10,

‘11’ => “test”,

‘another element’

);

echo $a[11];

?>

The expression $a[11] returns the element of the array $a with a key that can be inter-
preted as the integer number 11. Note that the array operator returns a reference to the
element, so you can actually use it to assign values to the element as well:

<?

$a[11] = ‘This is a test’;

?>

05 7090 ch04 7/16/04 8:43 AM Page 63

64 Chapter 4 Arrays

Note, however, that if you assign an array element to another variable, the assignment
will still happen by value because, even though the array operator returns a reference to
the element, the assignment operator will do its job by value:

<?

$a = array (1, 2, 3);

$b = $a[1]; // Will return 2

$b = 3;

echo $a[1]; // Will print 2

$c = &$a[1];

$c = “test”;

echo $a[1]; // Will print “test”

?>

As you can see here, the first assignment does not cause a reference to $a[1] to be
placed in $b. Instead, the value of the array element is copied into the variable, and
when the latter is modified, the former remains unchanged. If the assignment takes place
by reference, however, a change to the variable is also reflected in the array element.

The array operator can also be used to create an array by assigning a value to a vari-
able as if it were an array:

<?

$array[1] = 1;

var_dump ($array);

?>

This will result in $array—which was empty at the beginning of the script—to be ini-
tialized as an array with one element whose key is 1 and whose value is 1:

array(1) {

[1]=>

int(1)

}

05 7090 ch04 7/16/04 8:43 AM Page 64

65Creating Arrays

Finally, you can use the array operator to add an element to an array in sequence:

<?

$array[] = 1;

var_dump ($array);

?>

Assuming that $array was never defined, it will be reset to an array with one element
with a key of 0 and a value of 1.The same notes that apply to the addition of an
unkeyed element to an array using the array() construct also apply to using the array
operator without specifying a key.

Counting the Number of Elements in an Array
The simplest way to count the number of elements in an array is to use the count()
function:

<?

$array = array (

10,

20,

30

);

echo count ($array); // outputs 3

?>

Note that you can’t use count() to determine whether a variable contains an array
because it returns 1 for both an array that contains one element and for any other vari-
able that is not empty or set to Null.

Assigning Values from an Array to Multiple Variables
The list() construct makes it possible to assign the values of an array to multiple indi-
vidual variables at the same time:

<?

$array = array (

10,

20,

30

);

05 7090 ch04 7/16/04 8:43 AM Page 65

66 Chapter 4 Arrays

list ($a, $b, $c) = $array;

echo $a; // prints 10

echo $b; // prints 20

echo $c; // prints 30

?>

This construct works only if the array’s keys are all numeric, sequential, and start from 0.
Also, list() works by assigning values starting from the rightmost elements—this is not
much of a problem if you’re working with individual variables, but it could produce
unexpected results if you’re working with an array:

<?

$array = array (

10,

20,

30

);

$a = array();

list ($a[0], $a[1], $a[2]) = $array;

var_dump ($a)

?>

This script will create an array that is probably not ordered the way you’d expect:

array(3) {

[2]=>

int(30)

[1]=>

int(20)

[0]=>

int(10)

}

Multidimensional Arrays
As we mentioned at the beginning of this chapter, an array can contain an arbitrary
number of elements—including other arrays.

When an element of an array is itself an array, it can be accessed directly by append-
ing the array operator to the array operator of the container array element:

05 7090 ch04 7/16/04 8:43 AM Page 66

67Multidimensional Arrays

<?

$array = array (

0 => 10,

‘another array’ => array (

1 => 11,

2 => 22)

);

echo $array[‘another array’][2];

?>

An array that contains only other arrays is referred to as a multidimensional array. For
example,

<?

$array = array (

array (

10,

20,

30

),

array (

‘a’,

‘b’,

‘c’

)

);

var_dump ($array);

?>

The resulting array will contain two arrays, which, in turn contain three elements each.
Because we didn’t specify any keys, PHP will have created them for us:

<?

$array = array (

05 7090 ch04 7/16/04 8:43 AM Page 67

68 Chapter 4 Arrays

array (

10,

20,

30

),

array (

‘a’,

‘b’,

‘c’

)

);

echo $array[1][0]; // echoes ‘a’

echo $array[0][2]; // echoes 30

?>

Navigating Arrays
The operation that is perhaps performed most often on arrays is navigation (or walk-
ing)—the performance of a particular set of operations for each of its elements.

The simplest way to walk through an array, if you know for sure that it will always
contain numeric keys starting from 0, is to simply cycle through it with a simple for
loop:

<?

$array = array (

10,

20,

30

);

for ($i = 0; $i < count ($array); $i++)

{

echo $array[$i] * 10;

}

?>

In the preceding script, you’ll notice that the $i < count ($array) expression is evalu-
ated every time the for loop cycles. However, if the number of elements in the array is
invariant, this is quite inefficient because the PHP interpreter is forced to call the
count() function every time—and the result is unlikely to change.A better approach

05 7090 ch04 7/16/04 8:43 AM Page 68

69Navigating Arrays

would be to move the expression count ($array) into a variable before the loop
begins:

<?

$array = array (

10,

20,

30

);

$count = count ($array);

for ($i = 0; $i < $count; $i++)

{

echo $array[$i] * 10;

}

?>

This results in much better performance—but, remember, only if the number of ele-
ments in the array isn’t going to change.Also, remember that you can replace the for
loop with an equivalent while loop.

Using foreach
Another way of cycling through the contents of an array is to use a special construct
called foreach, which works regardless of how the array is set up:

<?

$array = array (

10,

5 => 20,

30

);

foreach ($array as $v)

{

echo $v * 10;

}

?>

With this syntax, the $v variable will contain the value of every element at every step of
the cycle in the order in which they appear in the array. Optionally, you can also retrieve
the key:

05 7090 ch04 7/16/04 8:43 AM Page 69

70 Chapter 4 Arrays

<?

$array = array (

10,

20,

30

);

foreach ($array as $k => $v)

{

echo “$k = “ . ($v * 10) . “\n”;

}

?>

Although it is very practical—which makes using it extremely tempting—there is one
major drawback to this construct: It works by creating a copy of the array and making all
its assignments by value.This means two things: First, you can’t change the value of an
array element simply by modifying the value variable created by the loop construct at
every step. If you want to change the value of an array element, you will have to make
sure that you retrieve the key of each element as well and make the change explicitly
into the array itself:

<?

$array = array (

10,

20,

30

);

foreach ($array as $k => $v)

{

$array[$k] = $v * 10;

}

?>

The second problem is the fact that the entire array must be duplicated can spell disaster
for your script’s performance—both in terms of CPU and memory usage, and particu-
larly if you’re dealing with a large array that is changed throughout the loop.

Using the Internal Pointer
The third way to walk through an array is to use an internal pointer that PHP automati-
cally assigns to each array.The pointer is reset to the beginning of the array by calling
the reset() function.Afterwards, each element can be retrieved by using a combination
of list() and each():

05 7090 ch04 7/16/04 8:43 AM Page 70

71Navigating Arrays

<?

$array = array (

10,

20,

30

);

reset ($array);

while (list ($k, $v) = each ($array))

{

echo “$k = $v\n”;

}

?>

This is the way list() and each() are most often used together. In reality, each actually
returns an array—for example, here’s what will be returned for the first row of $array
shown previously:

array(4) {

[1]=>

int(10)

[“value”]=>

int(10)

[0]=>

int(0)

[“key”]=>

int(0)

}

The advantage of using this mechanism is that, obviously, you don’t have to work on a
copy of the array.Therefore, your script’s performance will increase.

Using a Callback
The last way to walk through an array consists of using a callback function—that is, you
let PHP walk through the array and call a function you designate for each element of
the array.This is accomplished using the array_walk() function:

<?

$array = array (

10,

20,

30

);

05 7090 ch04 7/16/04 8:43 AM Page 71

72 Chapter 4 Arrays

function printout ($v)

{

echo “$v\n”;

}

array_walk ($array, ‘printout’);

?>

Manipulating Keys
Given the flexibility that PHP provides when assigning keys to the elements of an array,
being able to manipulate the former is often as important as manipulating the latter.

The keys of an array can be extracted from an array into another array by using the
array_keys() function:

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

$keys = array_keys ($array);

var_dump ($keys);

?>

By calling array_keys(), we cause the interpreter to return an array that contains all
the keys of $array in the order in which the respective elements appear in the array
itself:

array(3) {

[0]=>

int(1)

[1]=>

string(4) “test”

[2]=>

int(2)

}

05 7090 ch04 7/16/04 8:43 AM Page 72

73Manipulating Keys

Checking if an Element Exists
There are at least two ways to directly determine whether an element of an array exists.
The simplest is to use is_set:

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

if (isset ($array[2]))

{

echo ‘Element 2 is : ‘ . $array[2];

}

?>

This is simple enough and quite useful whenever you need to access an element of an
array (or, for that matter, any variable) and you’re not sure that it’s already been set.

Another possibility consists of using the array_key_exists() function:

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

if (array_key_exists ($array, 2))

{

echo ‘Element 2 is : ‘ . $array[2];

}

?>

The net effect of using this function instead of isset() is the same—the only difference
being that the latter is a language construct and, therefore, probably a bit faster than the
former.

05 7090 ch04 7/16/04 8:43 AM Page 73

74 Chapter 4 Arrays

Changing the Array of Keys
The array_change_key_case()function can be used to change the case of an array’s
keys:

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

$arr_2 = array_change_key_case ($array, CASE_UPPER);

var_dump ($arr_2);

?>

As you can see, array_change_key_case() returns a copy of the original array (which
translates in a performance impact if you’re dealing with a large array) whose keys have
all been changed to the specified case.The second parameter of the call determines the
new case of the keys. CASE_UPPER changes the case to uppercase, whereas CASE_LOWER
does the opposite.

Sorting an Array by Its Keys
As we mentioned at the beginning, there is no predefined relationship between the key
of an element and the element’s position in the array.This is not always a desirable situa-
tion, however, and you might want to be able to actually ensure that the elements of the
array are sorted according to their keys.This can be accomplished by using one of two
functions—ksort() and krsort():

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

echo “Sorting in ascending order: \n”;

ksort ($array);

05 7090 ch04 7/16/04 8:43 AM Page 74

75Manipulating Keys

var_dump ($array);

echo “Sorting in descending order: \n”;

krsort ($array);

var_dump ($array);

?>

The ksort() function causes the array to be ordered in ascending order based on its keys:

Sorting in ascending order:

array(3) {

[“test”]=>

string(13) “a test string”

[1]=>

int(10)

[2]=>

int(200)

}

krsort(), on the other hand, performs the exact opposite operation, sorting the array in
descending order based on its keys:

Sorting in descending order:

array(3) {

[2]=>

int(200)

[1]=>

int(10)

[“test”]=>

string(13) “a test string”

}

A number of options can be specified as the last parameter when calling either one of
these functions to determine how the sorting is performed:

n SORT_REGULAR (default)—Causes the array to be sorted according to the normal
rules that apply to comparison operations

n SORT_NUMERIC—Causes the comparison operations to be performed as if all the
keys were numeric

n SORT_STRING—Causes the comparison operations to be performed as if all the
keys were strings

These flags, which indeed apply to all array sorting operations, can significantly affect the
outcome of a call to ksort() or krsort(). For example,

05 7090 ch04 7/16/04 8:43 AM Page 75

76 Chapter 4 Arrays

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

echo “Sorting in ascending order: \n”;

ksort ($array, SORT_STRING);

var_dump ($array);

?>

If you execute this script, you will obtain a very different result from the one previously
because all the keys will be converted to strings and compared as such:

array(3) {

[1]=>

int(10)

[2]=>

int(200)

[“test”]=>

string(13) “a test string”

}

Manipulating Arrays
The amount of functions that manipulate arrays in PHP is staggering—a testament to
just how powerful and popular these elements of the language are.

The most common operation that you will want to perform on an array will proba-
bly be to sort it—there are a number of ways that you can go about it.

The simplest way to sort is to use the sort() or rsort() functions, which behave in
exactly the same way as ksort() and krsort() previously except that the sorting is
done on the values of each element rather than on the keys.

The only problem with using either one of these functions is that they do not main-
tain the association between keys and values. For example,

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

05 7090 ch04 7/16/04 8:43 AM Page 76

77Manipulating Arrays

200

);

sort ($array);

var_dump ($array);

?>

This script will sort the elements of $array, but the end result might not be what you
were expecting:

array(3) {

[0]=>

string(13) “a test string”

[1]=>

int(10)

[2]=>

int(200)

}

As you can see, the keys have been completely lost. If you want to maintain the associa-
tivity of the array, you will have to use asort() (for sorting in ascending order) and
arsort() (for sorting in descending order):

<?php

$array = array (

1 => 10,

‘test’ => ‘a test string’,

200

);

asort ($array);

var_dump ($array);

?>

This will result in the keys being saved and the order being changed as appropriate:

array(3) {

[“test”]=>

string(13) “a test string”

[1]=>

int(10)

[2]=>

int(200)

}

05 7090 ch04 7/16/04 8:43 AM Page 77

78 Chapter 4 Arrays

Note that all the parameters that could be passed to ksort() and krsort() can also be
passed to any of the other sorting functions we have examined this far.

Sorting Multidimensional Arrays
When dealing with multidimensional arrays, sorting becomes a slightly more complex
problem because each of the sub-arrays must also be sorted. If you use any of the sorting
functions shown so far on a multidimensional array, only the main array will be sorted—
the sub-arrays will remain untouched (and this might be what you’re after).

If you want the sub-arrays to be sorted as well—independently of each other—you
will have to do the honors by hand yourself:

<?php

$array = array (

array (11 => 10, 5 => 0, 3 => “a”, 100),

array (-1, 30, true, “test”)

);

$count = count ($array);

for ($i = 0; $i < $count; $i++)

{

sort ($array[$i]);

}

?>

PHP offers a function, called array_multisort(), that can come in handy when you
want to sort an array in relation to the contents of another.This function behaves simi-
larly to the SQL ORDER BY clause with each array passed to be interpreted as one col-
umn in a set of rows. Sounds confusing, doesn’t it? Let’s look at an example.

Suppose that you have a list of people and their ages in two arrays:

$array = array (

array (‘Jack’, ‘John’, ‘Marco’, ‘Daniel’),

array (21, 23, 29, 44)

);

If you want to sort the names alphabetically, for example, and maintain the correspon-
dence between each element in the first array with each element of the second—so that
after the sorting operation, the string Daniel will be in the same position as the number
44—array_multisort() is the function for you:

05 7090 ch04 7/16/04 8:43 AM Page 78

79Manipulating Arrays

<?php

$array = array (

array (‘Jack’, ‘John’, ‘Marco’, ‘Daniel’),

array (21, 23, 29, 44)

);

array_multisort ($array[0], $array[1]);

var_dump ($array);

?>

This will cause the elements of $array[1] to be sorted in the same way as those of
$array[0]:

array(2) {

[0]=>

array(4) {

[0]=>

string(6) “Daniel”

[1]=>

string(4) “Jack”

[2]=>

string(4) “John”

[3]=>

string(5) “Marco”

}

[1]=>

array(4) {

[0]=>

int(44)

[1]=>

int(21)

[2]=>

int(23)

[3]=>

int(29)

}

}

As you can see, the string Daniel is now first in $array[0], and the value 44 has been
moved accordingly. If two values in the first array have the same value, the corresponding
values in the second one will be sorted alphabetically as well:

05 7090 ch04 7/16/04 8:43 AM Page 79

80 Chapter 4 Arrays

<?php

$array = array (

array (‘Jack’, ‘John’, ‘Marco’, ‘Marco’, ‘Daniel’),

array (21, 23, 29, 11, 44)

);

array_multisort ($array[0], $array[1]);

var_dump ($array);

?>

This will result in the two values that correspond to Marco to be rearranged according
to normal sorting rules:

array(2) {

[0]=>

array(5) {

[0]=>

string(6) “Daniel”

[1]=>

string(4) “Jack”

[2]=>

string(4) “John”

[3]=>

string(5) “Marco”

[4]=>

string(5) “Marco”

}

[1]=>

array(5) {

[0]=>

int(44)

[1]=>

int(21)

[2]=>

int(23)

[3]=>

int(11)

[4]=>

int(29)

}

}

05 7090 ch04 7/16/04 8:43 AM Page 80

81Manipulating Arrays

You can even specify how the sorting takes place by passing two optional parameters
after each array.The first determines how the sorting comparisons are performed (and
accepts the same flags as the other sorting operations we have seen), whereas the second
one determines whether the sorting is done in ascending (SORT_ASC) or descending
(SORT_DESC) order.

It’s important to keep in mind that using array_multisort() is not the same as sort-
ing an array recursively as we did at the beginning of this section.

Randomizing Arrays
It’s often useful to extract a random value from an array.This can be accomplished by
using the array_rand() function, which returns the index of one or more elements
picked at random:

<?php

$array = array (‘Jack’, ‘John’, ‘Marco’, ‘Marco’, ‘Daniel’);

echo array_rand ($array, 1);

?>

In this case, we specified that only one element should be returned; therefore, we’ll
receive a single value. (It was 4 in my case, corresponding to the “Daniel” element.)
Had we specified more than one element, the result would have been returned as an
array of keys.

The array_rand() function corresponds a bit to saying “pick a card at random from
the deck.”What if, however, you want to shuffle the deck and change the order of the
array elements in a random way? That’s where the shuffle() function comes into play.
In fact, let’s look at this simple example, which creates an array of cards (each composed
of one letter to identify the suit and one character to identify the face itself):

<?php

$suits = “CDSH”;

$cards = “A234567890JQK”;

$suit_count = 4;

$card_count = 13;

// Create the deck

$deck = array();

for ($i = 0; $i < $suit_count; $i++)

{

05 7090 ch04 7/16/04 8:43 AM Page 81

82 Chapter 4 Arrays

for ($j = 0; $j < $card_count; $j++)

{

$deck[] = $suits{$i} . $cards{$j};

}

}

var_dump ($deck);

// Now shuffle the deck

shuffle ($deck);

var_dump ($deck);

?>

This script starts by creating a deck in which the cards are placed in sequence (for exam-
ple; CA, C2, C3, and so on) and then calls the shuffle() function to randomize the order
in which the items appear in the array.The output is too long to show here, but you
could definitely run a solitaire game just by picking out each element of the shuffled
deck in turn.

Merging Arrays
Another frequently needed array-manipulation feature is merging two or more arrays
together.This is done by calling the array_merge() function:

<?php

$a = array (10, 20, 30, 40);

$b = array (10, 20, 30, 40);

$array = array_merge ($a, $b);

var_dump ($array);

?>

This results in the $a and $b arrays being appended to each other in the order in which
they appear in the call to array_merge() and being stored in a new array:

array(8) {

[0]=>

int(10)

[1]=>

int(20)

[2]=>

int(30)

[3]=>

int(40)

05 7090 ch04 7/16/04 8:43 AM Page 82

83Manipulating Arrays

[4]=>

int(10)

[5]=>

int(20)

[6]=>

int(30)

[7]=>

int(40)

}

As you can see here, the two arrays are simply meshed together, and any values that
appear in both arrays are added to the end.This, however, only happens if they have
numeric keys—if they are associative elements with string keys, the element in the sec-
ond array ends up in the result:

<?php

$a = array (‘a’ => 10, 20, 30, 40);

$b = array (‘a’ => 20, 20, 30, 40);

$array = array_merge ($a, $b);

var_dump ($array);

?>

The preceding example will print this result:

array(7) {

[“a”]=>

int(20)

[0]=>

int(20)

[1]=>

int(30)

[2]=>

int(40)

[3]=>

int(20)

[4]=>

int(30)

[5]=>

int(40)

}

As you can see, the value of the ‘a’ element in $b ends up in the result array. If this
behavior is not what you’re looking for, you can use array_merge_recursive(), which
takes elements with the same string keys and combines them into an array inside the
value it returns:

05 7090 ch04 7/16/04 8:43 AM Page 83

84 Chapter 4 Arrays

<?php

$a = array (‘a’ => 10, 20, 30, 40);

$b = array (‘a’ => 20, 20, 30, 40);

$array = array_merge_recursive ($a, $b);

var_dump ($array);

?>

This results in the following array:

array(7) {

[“a”]=>

array(2) {

[0]=>

int(10)

[1]=>

int(20)

}

[0]=>

int(20)

[1]=>

int(30)

[2]=>

int(40)

[3]=>

int(20)

[4]=>

int(30)

[5]=>

int(40)

}

In this case, $a[‘a’] and $b[‘a’] are combined together into the $array[‘a’] array.

Intersection and Difference
If you want to extract all the elements that are common to two or more arrays, you can
use the array_intersect():

<?php

$a = array (‘a’ => 20, 36, 40);

$b = array (‘b’ => 20, 30, 40);

05 7090 ch04 7/16/04 8:43 AM Page 84

85Serializing Arrays

$array = array_intersect ($a, $b);

var_dump ($array);

?>

Here’s the output:

array(2) {

[“a”]=>

int(20)

[1]=>

int(40)

}

As you can see, this function only checks whether the values are the same—the keys are
ignored (although the key of the leftmost array is preserved). If you want to include
them in the check, you should use array_intersect_assoc() instead:

<?php

$a = array (‘a’ => 20, 36, 40);

$b = array (‘b’ => 20, 30, 40);

$array = array_intersect_assoc ($a, $b);

var_dump ($array);

?>

In this case, the result will be a one-element array because the two 20 values in $a and
$b have different keys:

array(1) {

[1]=>

int(40)

}

If you want to calculate the difference between two or more arrays—that is, elements
that only appear in one of the arrays but not in any of the others—you will need to use
either array_diff() or array_diff_assoc() instead.

Serializing Arrays
Given their flexibility, arrays are often used to store all sorts of information, and it is
handy to be able to save their contents at the end of a script and retrieve them later on.
This is done through a process, known as “serialization,” in which the contents of an
array are rendered in a format that can later be used to rebuild the array in memory.

05 7090 ch04 7/16/04 8:43 AM Page 85

86 Chapter 4 Arrays

In PHP, serialization is taken care of by two functions:
n serialize() renders the array in a format that can be safely saved to any contain-

er (such as a database field or a file) capable of handling textual content.
n unserialize() takes a serialized input and rebuilds the array in memory.

Using these two functions is very easy:

<?php

$a = array (‘a’ => 20, 36, 40);

$saved = serialize ($a);

// Your script may stop here if you save the contents

// of $saved in a file or database field

$restored = unserialize ($saved);

?>

The serialization functionality is very flexible and will be able to save everything that is
stored in your array—except, of course, for resource variables, which will have to be re-
created when the array is unserialized.

Exam Prep Questions
1. Which of the following types can be used as an array key? (Select three.)

A. Integer

B. Floating-point

C. Array

D. Object

E. Boolean

Answers A, B, and E are correct.A Boolean value will be converted to either 0 if
it is false or 1 if it is true, whereas a floating-point value will be truncated to its
integer equivalent.Arrays and objects, however, cannot be used under any circum-
stance.

05 7090 ch04 7/16/04 8:43 AM Page 86

87Exam Prep Questions

2. Which of the following functions can be used to sort an array by its keys in
descending order?

A. sort

B. rsort

C. ksort

D. krsort

E. reverse_sort

D is correct.The sort() and rsort() functions operate on values, whereas
ksort() sorts in ascending order and reverse_sort() is not a PHP function.

3. What will the following script output?
<?php

$a = array (‘a’ => 20, 1 => 36, 40);

array_rand ($a);

echo $a[0];

?>

A. A random value from $a

B. ‘a’

C. 20

D. 36

E. Nothing

Only E is correct.The $a array doesn’t have any element with a numeric key of
zero, and the array_rand() function does not change the keys of the array’s ele-
ments—only their order.

Questions of this type are in the exam not to trick you, but rather as a way to test your
ability to troubleshoot a problem. In this particular example, a developer who is well
versed in PHP recognizes the problem immediately, whereas a less experienced program-
mer will be sidetracked by thinking that something is wrong with the function being
called.After all, these kinds of bugs, usually caused by distraction or typos, are quite com-
mon in real-life code.

05 7090 ch04 7/16/04 8:43 AM Page 87

05 7090 ch04 7/16/04 8:43 AM Page 88

5
Strings and Regular Expressions

Terms You’ll Need to Understand
n The == and === operators
n Regular expression
n PCRE

Techniques You’ll Need to Master
n Formatting strings
n Comparing strings
n Modifying string contents
n Using regular expressions for pattern matching and extraction.
n Joining and splitting strings

The Web is largely a text-oriented environment. Data is submitted to websites in the
form of text strings, and the response (be it in HTML, XML, or even an image format)
is generally text as well.Accordingly, being able to analyze and manipulate text is a core
skill of any PHP programmer.

Comparing Strings
In this section, you will learn how to test whether two strings are equal, or whether one
string exists inside of another string.

06 7090 ch05 7/16/04 8:42 AM Page 89

90 Chapter 5 Strings and Regular Expressions

Comparison with == and ===
The most basic way of comparing any two entities in PHP is using the == operator
(called the is equal operator).When the == operator tests the equivalence of two entities,
it first reduces them to a common type.This often causes unexpected results. For exam-
ple, the following code outputs $a and $b are equal:

$a = ‘Hello World’;

$b = 0;

if($a == $b) {

print “\$a and \$b are equal\n”;

} else {

print “\$a and \$b are not equal\n”;

}

The reason this happens is that $a is a string type and $b is an integer, so the Zend
Engine needs to convert them to a common type for comparison. == is a weak operator,
so it converts to the more lenient type, namely integer.The integer representation of
‘Hello World’ is 0, so $a == $b is true. == should only be used to compare strings if
you are certain that both its operands are in fact strings.

PHP also provides the stronger equivalence operator === (called the is identical opera-
tor).Whereas the == was too weak to be useful in many situations, === is often too
strong. === performs no type-homogenization, and requires that both operands be of the
same type before a comparison can be successful.Thus, the following code outputs $a
and $b are not equal:

$a = 1;

$b = “1”;

if($a === $b) {

print “\$a and \$b are equal\n”;

} else {

print “\$a and \$b are not equal\n”;

}

This result occurs because $a is internally held as an integer, whereas $b, by virtue of its
being quoted, is a string.

Thus, === can be dangerous to use if you are not certain that both operands are
strings.

Tip
You can force a variable to be cast to strings by the use of casts. Thus,

if((string) $a === (string) $b) { ... }

will convert both $a and $b to strings before performing the conversion. This produces the results you

expect, but is a bit clumsy—using the strcmp family of functions is generally preferred.

06 7090 ch05 7/16/04 8:42 AM Page 90

91Comparing Strings

Using strcmp and Friends
The preferred way of comparing two entities as strings is to use the strcmp() function.
strcmp() takes two arguments and compares them lexigraphically (also known as diction-
ary ordering, as it is the same logic used in sorting words in a dictionary). strcmp()
returns 0 if the two strings are identical.Thus this code, which gave us trouble before,
will correctly output that $a and $b are the same:

$a = 1;

$b = “1”;

if(strcmp($a, $b) == 0) {

print “\$a and \$b are the same\n”;

} else {

print “\$a and \$b are different\n”;

}

If its two operands are not the same, strcmp() will return -1 if the first operand would
appear before the second in a dictionary, and 1 if the first operand would appear after
the second in a dictionary.This behavior makes it very useful for sorting arrays of words.
In fact, the following two bits of code will sort the array $colors in the same fashion
(in dictionary order):

$colors = array(“red”, “blue”, “green”);

sort($colors, SORT_STRING);

and

$colors = array(“red”, “blue”, “green”);

usort($colors, ‘strcmp’);

By itself, this is not very useful. (sort() should be preferred over usort() when per-
forming equivalent tasks), but strcmp() has some sibling functions that perform similar
tasks.

strcasecmp() is identical to strcmp() except that it performs comparisons that are
not case sensitive.This means that the following code that will output $a is the same as
HELLO, modulo case:

$a = ‘hello’;

if(strcasecmp($a, ‘HELLO’)) {

print “\$a is the same as HELLO, modulo case\n”;

}

Also, RED will come after blue when sorted via strcasecmp(), whereas with strcmp(),
RED will come before blue.

06 7090 ch05 7/16/04 8:42 AM Page 91

92 Chapter 5 Strings and Regular Expressions

Matching Portions of Strings
You’ve seen how to match strings exactly, but sometimes you only need to match a por-
tion of a string.When only a portion of a string is considered, it is referred to as a sub-
string. Specifically, a substring is any portion of a string. For example, PHP is a substring of
the string PHP is a scripting language.

Matching Leading Substrings

To match only the leading portion of strings, PHP provides the strncmp() family of
functions. strncmp() and strncasecmp() are identical to strcmp() and strcasecmp(),
but both take a third parameter, $n, that instructs PHP to compare only the first $n char-
acters of both strings.Thus strncmp(‘figure1.gif’, ‘figure2.gif’, 6) will return
0 (equal) because only the first six characters of each string is compared.

Matching Substrings at Arbitrary Offsets

If you need to determined simply whether a substring exists anywhere inside a given
string, you should use strstr(). strstr() takes as its first argument a string to be
searched (often called the subject), and as its second the substring to search for (often
called the search pattern). If strstr() succeeds, it will return the searched for substring
and all text following it; otherwise, it returns false.

Here is a use of strstr() to determine whether the word PHP appears in the string
$string:

if(strstr($string, ‘PHP’) !== FALSE) {

// do something

}

If you want to search for a substring irrespective of case, you can use stristr(). Here is
a check to see if any forms of ‘PHP’ (including ‘php’, ‘Php’, and so on) appear in
$string:

if(stristr($string, ‘PHP’) !== FALSE) {

// do something

}

If instead of the actual string you would like the position of the match returned to
you, you can use strpos(). strpos() works similarly to strstr(), with two major
differences:

n Instead of returning the substring containing the match, strpos() returns the
character offset of the start of the match.

n strpos() accepts an optional third parameter that allows you to start looking at a
particular offset.

Here is a sample usage of strpos() to find every starting position of the substring ‘PHP’
in a search subject $string.

06 7090 ch05 7/16/04 8:42 AM Page 92

93Formatting Strings

$offset = 0;

$match_pos = array();

while(($offset = strpos($string, ‘PHP’, $offset)) !== FALSE) {

$match_pos[] = $offset;

}

strpos() also has a not case-sensitive form, stripos(), that behaves in a similar fashion.

Tip
Because the first character in a string is at position 0, you should always use === to test whether a match

from strpos() succeeded or failed.

If you need to match from the end of your subject backwards, you can do so with
strchr(), strrpos(), or strripos(). strrpos() and strripos() behave identically to
strpos() and stripos() with the exception that they start at the end of the subject
string and that the search pattern can only be a single character. strrchr() behaves like
strstr(), returning the matched character and the rest of the subject following it, but it
also requires a single character search pattern and operates starting at the end of the sub-
ject (this is in contrast with the majority of strr* functions, which take full strings for
all their arguments).

Formatting Strings
Specifying specific formats for strings is largely a leftover from compiled languages such
as C, where string interpolation and static typing make it more difficult to take a collec-
tion of variables and assemble them into a string. For the most part, PHP will do all of
this for you. For example, most string formatting looks like this:

$name = ‘George’;

$age = 30;

print “$name is $age years old.”;

When variables are placed inside a double-quoted string, they are automatically expand-
ed. PHP knows how to convert numbers into strings as well, so $age is correctly
expanded as well.

Occasionally, however, you need to perform more complex formatting.This includes
the padding of numbers with 0s (for example, displaying 05 instead of 5), limiting the
printed precision of floating point numbers, forcing right-justification, or limiting the
number of characters printed in a particular string.

printf Formats
The basic function for formatting is printf(). printf() takes a format string and a list
of arguments. It then passes through the formatting string, substituting special tokens
contained therein with the correctly formatted arguments.

06 7090 ch05 7/16/04 8:42 AM Page 93

94 Chapter 5 Strings and Regular Expressions

Formatting tokens are denoted with a %. In their simplest form, this is followed
directly by a type specifier from Table 5.1.

Table 5.1 printf() Format Specifiers

Specifier Format

b The argument is treated as an integer and is presented as an integer in binary
form.

c The argument is treated as an integer and is presented as the ASCII character
for that value.

d The argument is treated as an integer and presented as a signed integer.

u The argument is treated as an integer and presented as an unsigned integer.

f The argument is treated as a floating-point number and presented as a float-
ing-point number.

o The argument is treated as an integer and presented as its octal representation.

x The argument is treated as an integer and presented as a hexadecimal number
(using lowercase letters).

X The argument is treated as an integer and presented as a hexadecimal number
(using uppercase letters).

Thus, the preceding simple code block that prints $name and $age can be rewritten as
follows:

printf(“%s is %d years old”, $name, $age);

By itself, this is not terribly useful.Though it might be slightly more readable than using
interpolated variables (especially to people coming from a C or Java background), it is
also slower and not more flexible.

The usefulness of the formatting functions comes via the format modifiers that can
be added between the % and the format specifier, from right to left:

n A floating-point precision, given by a . followed by the desired precision that says
how many decimal places should be displayed for a floating point number. Note
that this will round numbers to the specified precision.

n A field width that dictates how many characters minimum should be displayed for
this token. For example, to guarantee that at least eight characters are allotted for
an integer, you would use the format specifier “%8d”. By default, blank spaces are
used to pad the results.

n To left-justify a formatting, a - can be added to the format.
n Instead of using blank spaces, an expansion can be padded with 0s by preceding

the width-specifier with a 0.Thus, if you are printing time in 24-hour notation
(such that one o’clock is printed as 01:00), you can use the following:

printf(“%02d:%02d”, $hour, $minute);

06 7090 ch05 7/16/04 8:42 AM Page 94

95Extracting Data from Strings

Optionally, a different character can be specified by escaping it with a ‘. So to pad all
your numbers with xxx, you would use

printf(“%’xd”, $number);

printf() Family Functions
PHP has a small collection of formatting functions that are differentiated from each
other by how they take their arguments and how they handle their results.

The basic function (which you saw previously) is printf(). printf() takes a format
string and a variable number of arguments that it uses to fill out the format string. It
outputs the result.

fprintf() is identical to printf(), except that instead of writing output to the stan-
dard display stream, it writes output to an arbitrary stream resource specified as the first
parameter.

sprintf() is identical to printf(), but instead of outputting its results, it returns
them as a string.

vprintf() takes its arguments as a single array (instead of a variable number of indi-
vidual arguments) and outputs the result.This is useful when you are passed a variable
number of arguments—for example, via call_user_func_array() or
func_get_args().

vsprintf() is identical to vprintf(), except that instead of outputting its result, it
returns it as a string.

Table 5.2 is a complete listing of all the formatting functions, with a list of the args
they take and where their result is sent (as output, to an arbitrary stream, or to a string).

Table 5.2 Formatting Functions

Function Args Result

printf format, args writes output

sprintf format, args returns result

vprintf format, array of args writes output

vsprintf format, array of args returns result

fprintf stream resource, writes output to
format, args stream

Extracting Data from Strings
When dealing with data that comes in from an external source (for example, read from a
file or submitted via a form), complex data is often packed into strings and needs to be
extracted. Common examples include decomposing phone numbers, credit card num-
bers, and email addresses into their base components. PHP provides both basic string
functions for efficiently extracting data in fixed formats, as well as regular expression
facilities for matching more complex data.

06 7090 ch05 7/16/04 8:42 AM Page 95

96 Chapter 5 Strings and Regular Expressions

Extracting Substrings by Offset
To extract a substring by offset, you can use the substr() function. substr() works by
taking a string (the subject), an offset from the beginning of the string from which to
start, and an optional length (by default, the remainder of the string from which the start
offset is grabbed).

For example, to get all of $string except for the first character, you can use the
following:

$result = substr($string, 1);

or to grab the first eight characters of a string, you can use this code:

$result = substr($string, 0, 8);

For a more nontrivial example, consider this code that grabs the local part of an email
address (the part before the @ character) by using strpos() to find the @ symbol and
substr() to extract the substring preceding it:

$local_part = substr($email, 0, strpos($email, ‘@’));

If you need to grab a substring at the end of your subject, you can use a negative offset
to indicate that your match is relative to the end of a string. For example, to grab the last
four characters of a string, you can do the following:

$result = substr($email, -4);

If you need to only access individual characters in a string, you can use curly braces ({})
to access the string’s characters by offsets. For example, to iterate over every character in
a string and capitalize the odd numbered characters, you can do the following:

$len = strlen($string);

for($i = 0; $i < $len; $i++) {

if($i % 2) {

$string{$i} = strtoupper($string{$i});

}

}

Extracting Formatted Data
Real-world data extraction tasks often involve strings that have vague formats. Complex
data extraction usually requires the use of regular expressions (covered later in this chap-
ter), but if the data is of a format that can be specified with a printf() formatting
string, you can use sscanf() to extract the data.

For example, to match IP address/port number pairings of the form
127.0.0.1:6137, you can use the format “%d.%d.%d.%d:%d”.That can be used with
sscanf() as follows:

$parts = sscanf($string, “%d.%d.%d.%d:%d”);

06 7090 ch05 7/16/04 8:42 AM Page 96

97Modifying Strings

If $string is 127.0.0.1:6137, $parts will be filled out thusly:

Array

(

[0] => 127

[1] => 0

[2] => 0

[3] => 1

[4] => 6137

)

Though flexible, sscanf() parsing is a bit fragile:The pattern must match exactly (mod-
ulo whitespace) at the beginning of the subject string.

Modifying Strings
In this section, you will see how to modify strings by replacing substrings, both by the
offset of where you want to perform the replacement and by simple pattern match (for
example, replacing all occurrences of ‘foo’ with ‘bar’).

Modifying Substrings by Offset
To replace a substring in a subject string, you can use the substr_replace() function.
substr_replace()’s first argument is a subject string; its second a replacement string; its
third the offset to start the replacement at; and its optional fourth argument is the length
of the subject substring to replace.

To illustrate this, consider how to X out all but the last four digits of a credit card
number. Here is code to perform this with substr_replace():

$len = strlen($ccnum);

$newnum = substr_replace($ccnum, str_repeat(‘X’, $len -4), 0, $len - 4);

First, you find the length of the credit card number in question, and then you replace the
first $len - 4 characters with an equal number of X’s.

Replacing Substrings
Another common string modification task is replacing all occurrences of one substring
with another.The preferred function for doing this is str_replace(). str_replace()
takes as its first argument a string to be matched, and as its second the string to substitute
in. Its third parameter is the subject on which all this replacement should occur. For
example, to replace all occurrences of :) with the image link , you can use the following replacement:

$new_subject = str_replace(‘:)’, ‘’, $subject);

06 7090 ch05 7/16/04 8:42 AM Page 97

98 Chapter 5 Strings and Regular Expressions

Of course, you often need to do not case-sensitive substitutions. For example, if you
need to reverse the action of nl2br() and replace all HTML
 line breaks with
newlines, you need to match
 not case sensitively. str_ireplace() supplies this
semantic, enabling the search strings to be matched irrespective of case. Here is a func-
tion br2nl() illustrating that:

function br2nl($subject)

{

return str_ireplace(“
”, “\n”, $subject);

}

Both str_replace() and str_ireplace() also accept arrays for all their parameters.
When arrays are passed for the pattern and replacement, all the replacements are execut-
ed with that one call. If an array of subjects is passed, the indicated replacements will be
performed on each in turn. Here you can see this array functionality used to substitute a
couple of emoticons in one pass:

$emoticons = array(‘:)’ => ‘’,

‘;)’ => ‘’,

‘:(‘ => ‘’);

$new_subject = str_replace(array_keys($emoticons),

array_values($emoticons), $subject);

Regular Expressions
The most powerful tools in the string manipulation toolbox are regular expressions
(often abbreviated regexps). Regular expressions provide a robust language for specifying
patterns in strings and extracting or replacing identified portions of text.

Regular expressions in PHP come in two flavors: PCRE and POSIX. PCRE regular
expressions are so named because they use the Perl Compatible Regular Expression
library to provide regexps with the same syntax and semantics as those in Perl. POSIX
regular expressions support standard POSIX-extended regular expression syntax.The
POSIX regular expression functions (the ereg_ family of functions and split()) are
slower than their PCRE equivalents, not-binary safe, less flexible, and in general their use
is discouraged in favor of the PCRE functions.

Basic PCRE Syntax
A regular expression pattern is a string consisting of plain text and pattern metacharac-
ters.The regexp metacharacters define the type and number of characters that can match
a particular part of a pattern.

The most basic set of metacharacters are the character classes, which allow a pattern
to match multiple characters simultaneously.The basic character classes are shown in
Table 5.3.

06 7090 ch05 7/16/04 8:42 AM Page 98

99Regular Expressions

Table 5.3 PCRE Base Character Classes

Metacharacter Characters Matched

\d Digits 0–9

\D Anything not a digit

\w Any alphanumeric character or an underscore (_)

\W Anything not an alphanumeric character or an underscore

\s Any whitespace (spaces, tabs, newlines)

\S Any nonwhitespace character

. Any character except for a newline

The basic character class metacharacters each match a single character.Thus, to make
them useful in patterns, you need to be able to specify how many times they must
match.To do this, PCRE supports enumeration operators.The enumeration operators
are shown in Table 5.4.

Table 5.4 PCRE Enumerators

Operator Meaning

? Occurs 0 or 1 time

* Occurs 0 or more times

+ Occurs 1 or more times

{,n} Occurs at most n times

{m,} Occurs m or more times

{m,n} Occurs between m and n times

Putting these together, you can form basic patterns such as, ‘matches a US ZIP+4’:
\d{5}-\d{4}. Notice that the - character is in the pattern. If a nonmetacharacter appears
in the pattern, it must be matched exactly.

To test to see if a string $subject matches this pattern, you use preg_match() as
follows:

if(preg_match(“/\d{5}-\d{4}/”, $subject)) {

// matches a ZIP+4

}

preg_match()’s first argument is the pattern, and the second argument is the subject
string. Notice that the pattern itself is enclosed in forward slashes. PCRE supports arbi-
trary delimiters for patterns, but be aware that the delimiter character must be escaped
within the pattern.

Unlike sscanf() format matches, a preg_match() will match anywhere it can in the
subject string. If you want to specify that the pattern must start matching immediately at
the beginning of the subject, you should use the positional anchor ^.You can also match

06 7090 ch05 7/16/04 8:42 AM Page 99

100 Chapter 5 Strings and Regular Expressions

the end of a string with the positional anchor $.Thus, to match a string only if it is
exactly a U.S. ZIP+4, with no leading or trailing information, you can use the following

if(preg_match(“/^\d{5}-\d{4}$/”, $subject)) {

// matches a ZIP+4 exactly

}

You can create your own character classes by enclosing the desired characters in brackets
([]). Ranges are allowed.Thus to create a character class that matches only the digits 2
through 9, you can use

[2-9]

You could use this in a regular expression to capture U.S. phone numbers as follows:

/[2-9]\d{2}-[2-9]\d{2}-\d{4}/

U.S. area codes and exchanges cannot begin with a 0 or a 1, so this regexp avoids them
by looking for a digit between 2 and 9 followed by any two digits.

Patterns can have aspects of their base behavior changed by appending modifiers after
the closing delimiter.A list of common pattern modifiers is shown in Table 5.5.

Table 5.5 PCRE Pattern Modifiers

Modifier Meaning

i Matches not case sensitively

m Enables positional anchors to match at any newline in a subject string

s Enables . to match newlines

x Enables comments and whitespace in regexps

u Treats data as UTF-8

Extracting Data with Regular Expressions
Usually you will want to do more than assert that a subject matches a pattern; you will
also want to extract the portions of the subject that match the pattern.To capture pieces
of patterns, you must group the portions of the pattern you want to capture with paren-
theses. For example, to capture the two components of a ZIP+4 code into separate
matches, you need to group them individually into subpatterns as follows:

/(\d{5})-(\d{4})/

After you’ve specified your capture subpatterns, you can read their matches by passing an
array as the third parameter to preg_match().The subpattern matches will be stored in
the match array by their pattern number, which is determined by numbering the subpat-
terns left-to-right by the position of their opening parenthesis.To illustrate, if you exe-
cute the following code:

06 7090 ch05 7/16/04 8:42 AM Page 100

101Regular Expressions

$string = ‘My zipcode is 21797-2046’;

if(preg_match(“/(\d{5})-(\d{4})/”, $string, $matches)) {

print_r($matches);

}

you will get this output:

Array

(

[0] => 21797-2046

[1] => 21797

[2] => 2046

)

Note that $matches[0] contains the portion of $string matched by the pattern as a
whole, whereas the two subpatterns are accessible by their pattern numbers.Also note
that because the pattern is not anchored with ^, it is not a problem that the subject does
not begin with the ZIP Code and the match can commence in the middle of the string.

Tip
preg_match() only matches the first occurrence of its regexp. To execute a global match that returns

all matches in the subject, you can use preg_match_all().

Pattern Replacement with Regular Expressions
Regular expressions also allow you to perform replacements on subject strings.
Performing replacements with regexps is similar to using str_replace() except that
instead of a fixed string being searched for, an arbitrary regular expression pattern can be
used.

To perform a regular expression substitution, use the preg_replace() function. Its
first argument is a regular expression that should match the text you want to replace. Its
second argument is the replacement text, which can either be a string literal or can con-
tain references to subpatterns as \n (where n is the subpattern number). Its third argu-
ment is the subject string to operate on.

Thus, if you match email addresses with /(\S+)@(\S+)/, you can sanitize them
(removing the @ to reduce address harvesting by spammers) by performing the following
substitution:

$new_subject = preg_replace(“/(\S+)@(\S+)/”, ‘\1 at \2’, $subject);

This code will convert addresses such as ‘license@php.net’ to ‘license at
php.net’.

Splitting Strings into Components
PHP provides you three main options for taking a string and separating it into compo-
nents: explode(), split(), and preg_split().

06 7090 ch05 7/16/04 8:42 AM Page 101

102 Chapter 5 Strings and Regular Expressions

explode() is the simplest of the three options. It enables a string to be split into
components based on a completely static delimiter.A typical usage of this would be to
extract all the information from a UNIX systems /etc/passwd file, as shown here:

$info = array();

$lines = file(“/etc/passwd”);

foreach($lines as $line) {

$info[] = explode(‘:’, $line);

}

Because its matching logic is simple and it involves no regular expressions, explode() is
the fastest of the three splitting methods.When possible, you should prefer it over
split() and preg_split().

split() is a POSIX extended regular expression function, and should in general be
eschewed for preg_split(), which is more flexible and just as fast.

preg_split() allows you to break up a string using a regexp for your delimiter.This
provides you a great deal of flexibility. For example, to split on any amount of white-
space, you can use the following regexp:

$parts = preg_split(“/\s+/”, $subject);

preg_split()’s use of regular expressions makes it more flexible but a bit slower than
explode(). Use it when you have complex decomposition tasks to carry out.

Exam Prep Questions
1. Given

$email = ‘bob@example.com’;

which code block will output example.com?

A. print substr($email, -1 * strrpos($email, ‘@’));

B. print substr($email, strrpos($email, ‘@’));

C. print substr($email, strpos($email, ‘@’) + 1);

D. print strstr($email, ‘@’);

Answer C is correct. strpos() identifies the position of the @ character in the
string.To capture only the domain part of the address, you must advance one place
to the first character after the @.

2. Which question will replace markup such as img=/smiley.png with ?

A. print preg_replace(‘/img=(\w+)/’, ‘’, $text);

B. print preg_replace(‘/img=(\S+)/’, ‘’, $text);

C. print preg_replace(‘/img=(\s+)/’, ‘’, $text);

D. print preg_replace(‘/img=(\w)+/’, ‘’, $text);

06 7090 ch05 7/16/04 8:42 AM Page 102

103Exam Prep Questions

Answer B is correct.The characters / and . are not matched by \w (which only
matches alphanumerics and underscores), or by \s (which only matches white-
space).

3. Which of the following functions is most efficient for substituting fixed patterns in
strings?

A. preg_replace()

B. str_replace()

C. str_ireplace()

D. substr_replace()

Answer B is correct.The PHP efficiency mantra is “do no more work than neces-
sary.” Both str_ireplace() and preg_replace() have more expensive (and flexi-
ble) matching logic, so you should only use them when your problem requires it.
substr_replace() requires you to know the offsets and lengths of the substrings
you want to replace, and is not sufficient to handle the task at hand.

4. If

$time = ‘Monday at 12:33 PM’;

or

$time = ‘Friday the 12th at 2:07 AM’;

which code fragment outputs the hour (12 or 2, respectively)?

A. preg_match(‘/\S(\d+):/’, $time, $matches);

print $matches[1];

B. preg_match(‘/(\w+)\Sat\S(\d+):\d+/’, $time, $matches);

print $matches[2];

C. preg_match(‘/\s([a-zA-Z]+)\s(\w+)\s(\d+):\d+/’, $time,

$matches);

print $matches[3];

D. preg_match(‘/\s(\d+)/’, $time, $matches);

print $matches[1];

E. preg_match(‘/\w+\s(\d+):\d+/’, $time, $matches);

print $matches[1];

Answer E is correct.Answer A and B both fail because \S matches nonwhitespace
characters, which break the match.Answer C will correctly match the first $time
correctly, but fail on the second because ‘12th’ will not match [a-zA-Z].Answer D
matches the first, but will fail on the second, capturing the date (12) instead of the
hour.

06 7090 ch05 7/16/04 8:42 AM Page 103

104 Chapter 5 Strings and Regular Expressions

5. Which of the following output ‘True’?

A. if(“true”) { print “True”; }

B. $string = “true”;

if($string == 0) { print “True”; }

C. $string = “true”;

if(strncasecmp($string, “Trudeau”, 4)) { print “True”; }

D. if(strpos(“truelove”, “true”)) { print “True”; }

E. if(strstr(“truelove”, “true”)) { print “True”; }

Answers A, B, C, and E are correct.Answer A is correct because a non-empty
string will evaluate to true inside an if() block.Answer B is covered in the chap-
ter—when comparing a string and an integer with ==, PHP will convert the string
into an integer. ‘true’ converts to 0, as it has no numeric parts. In answer C,
strncasecmp() returns 1 because the first four characters of ‘Trud’ come before
the first four characters of true when sorted not case sensitively.Answer D is
incorrect because strpos() returns 0 here (true matches truelove at offset 0).
We could make this return True by requiring strpos() to be !== false.Answer
E is correct because strstr() will return the entire string, which will evaluate to
true in the if() block.

06 7090 ch05 7/16/04 8:42 AM Page 104

6
File Manipulation

Techniques You’ll Need to Master
n How to open a file
n How to read from a file
n How to write to a file
n How to close a file
n How to interact with the filesystem
n How to lock files
n Miscellaneous functions for handling files

Terms You’ll Need to Understand
n File resources
n File properties
n Advisory locking
n End of File

Interacting with files is a constant aspect of programming.Whether they are cache files,
data files, or configuration files, the ability to manipulate files and their contents is a core
skill for PHP programmers. In this chapter, you will learn how to open file stream
resources for reading from and writing to files, as well as filesystem-level functions for
manipulating file attributes.

07 7090 ch06 7/16/04 8:44 AM Page 105

106 Chapter 6 File Manipulation

Opening Files
When interacting with files in PHP, the first step is to open them. Opening files creates a
resource that you must pass to the functions for reading, writing, and locking files.To
open a file, use the fopen() function.

fopen() takes as its first parameter the filename to open, and as its second the mode
with which to open the file.The filename can be either a local file or any network pro-
tocol that PHP understands. In this chapter, we will only discuss local files: Network
streams will be covered in Chapter 10,“Stream and Network Programming.”The mode
determines what you can do with the file (read/write, write-only, read-only), where
your file resource will start from (the beginning of the file or the end of the file), and
what to do if the file does not exist (create it or fail).The complete list of modes is pre-
sented in Table 6.1. fopen() also takes an optional argument: a Boolean flag indicating
whether the include_path should be searched (defaults to false).

Table 6.1 fopen() Modes

Mode Description

r Opens file for reading only; position is beginning of the file.

r+ Opens for reading and writing; position is beginning of the file.

w Opens for writing only; position is beginning of the file; if the file does not exist,
creates it.

w+ Opens file for reading and writing; position is beginning of the file; if the file does
not exist, creates it.

a Opens file for writing only; position is end of the file; if the file does not exist, cre-
ates it.

a+ Opens file for reading and writing; position is end of the file; if the file does not
exist, creates it.

x Creates and opens a file for writing; position is at the beginning of the file; if the
file already exists, fails.

x+ Creates and opens a file for reading and writing; position is at the beginning of the
file; if the file already exists, fails.

On Windows systems, you can also specify explicitly whether your file consists of binary
or text data. (The default is text.) To do this, you can append a b or t to the mode,
respectively. Failure to do this can result in writing corrupted binary files.Although this
flag is only necessary on Windows platforms, it is recommended that you always use it
for portability reasons.

If the fopen() call fails for any reason, it will return false and emit an E_WARNING
level error; otherwise, it will return a stream resource for the file. For example, to open a
file for appending information, you would use code such as this:

07 7090 ch06 7/16/04 8:44 AM Page 106

107Reading from a File

if(($fp = fopen($filename, “a”)) === false) {

// call failed, do something appropriate

}

// call succeeded, proceed normally

A call to fopen() can fail for a number of reasons—for example, if a file to be opened
for reading does not exist or the executing user does not have sufficient permissions to
open it with the specified mode.

Closing Files
After you are done accessing a file resource, you should close it. Unclosed files will be
automatically closed by PHP at the end of a request. But if two processes write to the
same file at the same time, they risk corruption, so you need to either close your files as
expediently as possible or implement a locking scheme.To close an open file resource,
you can use the fclose() function.

Reading from a File
When you have a valid file resource opened for reading, you can read from it in a num-
ber of ways. Before you go about performing reads, however, you should ensure that
your stream resource still has data available.You can check this using the function
feof(). feof() returns true if the file resource has hit EOF (End Of File).

The most basic of the read functions is fread(). fread() takes as its two parameters
the file resource handle to read from and the length to be read. It returns a string with
the data that was read or false if an error occurred.

Here is an example of reading a file 1024 bytes at a time until it is complete:

if(($fp = fopen($filename, “r”)) === false) {

return;

}

while(!feof($fp)) {

$buffer = fread($fp, 1024);

// process $buffer

}

If you want to read your file resource a single line at a time, you can use the fgets()
function. fgets() takes a file resource as its first argument and reads up to 1024 bytes
from the file, returning when it reaches a newline.To change the maximum readable
string length, you can pass a length as an optional second parameter. On success, the line
just read (including its newline) is returned. If an error occurs, false is returned.

As an example, here is a code block that reads in a file of lines such as

foo=bar

07 7090 ch06 7/16/04 8:44 AM Page 107

108 Chapter 6 File Manipulation

and constructs an array using them as key value pairs:

$arr = array();

if(($fp = fopen($filename, “r”)) === false) {

return;

}

while(!feof($fp)) {

$line = fgets($fp);

list($k, $v) = explode(‘=’, rtrim($line));

$arr[$k] = $v;

}

The fpassthru() function allows you to directly output all the remaining data on a file
resource.The following code checks the first four bytes of a file to see if it is a JPEG; if
so, it sets the file resource position back to the start of the file using fseek() and outputs
the entire file:

function output_jpeg($filename)

{

if(($fp = fopen($filename, “rb”)) === false) {

return;

}

$line = fread($fp, 4);

// check the ‘magic number’ of the file

if($line === “\377\330\377\340”) {

fseek($fp, 0);

fpassthru($fp);

}

fclose($fp);

}

Writing to a File
If you have a file resource opened for writing, you can write to it using fwrite(),
which is the inverse of fread().

fwrite() takes as its first argument a file resource and as its second the string to
write to that file. Optionally, you can pass a third argument—the maximum length that
you want to write with the call. fwrite() returns the number of bytes written to the
file resource. fputs() is an alias of fwrite()—they perform the exact same functions.

You can force a flush of all output to a file using the fflush() function. Flushing
data is implicitly done when a file resource is closed, but is useful if other processes
might be accessing the file while you have it open.

Here is an example of a function that appends time stamped data to a logfile:

07 7090 ch06 7/16/04 8:44 AM Page 108

109Determining Information About Files

function append_to_log($logline)

{

if(($fh = fopen(‘debug.log’, ‘a’)) === false) {

die(“Can not open debug.log”);

}

fwrite($fh, time().” “.$logline.”\n”);

fclose($fh);

}

Determining Information About Files
To get information about a file, you can use one of two sets of functions, depending on
whether you have an open file resource for that file. If you do have a file resource, you
can use the fstat() function. Calling fstat() on a file resource will return an array
with the following keys:

“dev” The device number on which the file lies

“ino” The inode number for the file

“mode” The file’s mode

“nlink” The number of hard links to the file

“uid” The userid of the files owner

“gid” The groupid for the file

“rdev” The device type (if it’s an inode device on UNIX)

“size” The size of the file in bytes

“atime” The UNIX time stamp of the last access of the file

“mtime” The UNIX time stamp of the last modification of the file

“ctime” The UNIX time stamp of the last change of the file
(identical to mtime on most systems)

“blksize” The blocksize of the filesystem (not supported on all systems)

“blocks” The number of filesystem blocks allocated for the file

If you do not have an open file resource for a file, you can generate this same array using
stat(), which takes the filename instead of the file resource. If the file does not exist, or
if you do not have permissions to access the directories in the path to file, stat() will
return false.

PHP also provides a number of ‘shortcut’ functions for accessing these individual
properties.These functions are listed in Table 6.2.All these functions take the file’s name
as their sole argument.

07 7090 ch06 7/16/04 8:44 AM Page 109

110 Chapter 6 File Manipulation

Table 6.2 File Property Convenience Function

Function Name Description

file_exists() Returns true if the file exists

fileatime() Returns the last access time of the file

filectime() Returns the last change time of the file

filemtime() Returns the last modification time of the file

filegroup() Returns the file’s groupid

fileinode() Returns the file’s inode

fileowner() Returns the file’s owner’s uid

fileperms() Returns the file’s mode

filesize() Returns the file’s size in bytes

filetype() Returns the type of file (inode, directory, fifo, and so on)

is_dir() Returns true if the file is a directory

is_executable() Returns true if the file is executable

is_file() Returns true if the file is a regular file

is_link() Returns true if the file is a soft link

is_readable() Returns true if the file is readable

is_uploaded_file() Returns true if the file was just uploaded via a HTTP POST
request

is_writable() Returns true if the file is writable

In addition to finding general information about files, these functions are useful for pre-
ventative error checking. For example, here is code that checks whether a file is readable
and of nonzero length before opening it:

if(!is_file($filename) ||

!is_readable($filename) ||

!filesize($filename)) {

die(“$filename is not good for reading”);

}

if(($fp = fopen($filename, “r”)) === false) {

die(“Opening $filename failed”)

}

Manipulating Files on the Filesystem
PHP also allows you to manipulate files: copying them, deleting them, changing their
permissions, and more.

Copying, Deleting, and Moving Files
To copy a file, you can use the copy() function, which works as follows:

copy($source_file, $destination_file);

07 7090 ch06 7/16/04 8:44 AM Page 110

111Locking Files

To delete a file, use the unlink() function:

unlink($filename);

To move a file, you can use rename(), which works like this:

rename($old_filename, $new_filename);

If the source and destination paths are on the same filesystem, rename() is atomic, mean-
ing that it happens instantly. If the source and destination paths are on different filesys-
tems, rename() must internally copy the old file to the new file and then remove the
old file, which can take significant time for large files.

Changing Ownership and Permissions
To change the ownership of a file, you can use the chown() function. chown() takes the
target filename as its first argument and either a username or userid as its second argu-
ment. Only the superuser can change the owner of a file, so you will likely only use this
script in an administrative shell script.

To change the group of a file, you use the chgrp() function. chgrp() takes the target
filename as its first parameter and the new groupname or groupid as its second parame-
ter. Only the owner of a file can change its group, and then can only change it to a new
group that the owner is also a member of.

To change the mode of a file, you use chmod().The first argument is the target file-
name, and the second argument is the new mode in octal. It is important that the mode
be an octal number and not a decimal number. Using a decimal number will not throw
an error, but it will be internally converted into an octal number, most likely not result-
ing in what you intended.

Locking Files
To avoid the possibility of corruption when dealing with multiple processes writing to
the same file, you can use locks to moderate access. PHP supports locking through the
flock() function.The flock()-based locking function is discretionary, meaning that
other flock() users will correctly see the locks, but if a process does not actively check
the locks, that process can access the file freely.This means that your use of flock()
needs to be consistent and comprehensive in order for it to be effective.

To use flock(), you first need to have an open file resource for the file you want to
lock.You can then call flock() with that resource as its first argument, a locking opera-
tion constant as the second argument.The possible operations are

LOCK_SH Try to acquire a shared lock

LOCK_EX Try to acquire an exclusive lock

LOCK_UN Release any locks

By default, these operations are all blocking.This means that if you try to take an exclu-
sive lock while another process has a shared lock, your process will simply block, or wait,
until the shared lock is released and the exclusive lock can be gained.Alternatively you

07 7090 ch06 7/16/04 8:44 AM Page 111

112 Chapter 6 File Manipulation

can Boolean-OR the operation constant with LOCK_NB to have the operation fail if it
would have blocked. If you use this nonblocking option, you can pass a third parameter
that will be set to true if the call’s failure was because the call would have blocked.

A typical use for locking is to safely append data to a file—for example, a logfile.This
is composed of two functions: a writer and a reader.The writer takes an exclusive lock
on the data file so that write access is serialized.The reader takes a shared lock so that it
can read concurrently with other readers, but not conflict with writers. Here is code for
the reader:

function retrieve_guestbook_data()

{

if(($fp = fopen(‘guestbook.log’, ‘r’)) === false) {

die(“Failed to open guestbook.log”);

}

flock($fp, LOCK_SH);

$data = fread($fp, filesize(‘guestbook.log’));

flock($fp, LOCK_UN);

fclose($fp);

return $data;

}

Miscellaneous Shortcuts
In addition to the basic file functions, PHP offers a collection of ‘shortcut’ functions that
allow you to handle common tasks with a single function call. In this final section, you
will learn some of the more common shortcut functions available in PHP.

file()
Often you will want to convert a file into an array of its lines.The file() function per-
forms this task. It takes the filename to read as its first argument and an optional flag as
its second argument, specifying whether the include_path should be searched to find
the file.

Because the entire file must be read in and parsed when file() is called, this func-
tion can be expensive if used on large files. For larger files, you will often want to open
the file with fopen() and iterate over it line by line with fgets() to achieve a similar
effect.

readfile()
Similar to fpassthru(), readfile() directly outputs an entire file. readfile
($filename) is equivalent to the following PHP code:

if($fp = fopen($filename, ‘r’)) {

fpassthru($fp);

fclose($fp);

}

07 7090 ch06 7/16/04 8:44 AM Page 112

113Exam Prep Questions

file_get_contents()
Although it is possible to read an entire file into a string with the following code,

if(($fp = fopen($filename, “r”)) === false) {

$file = false;

} else {

$file = fread($fp, filesize($filename));

}

fclose($fp);

it is much more efficient to use the built-in function file_get_contents().That func-
tion will replace the entire previous loop with

$file = file_get_contents($filename);

Exam Prep Questions
1. What are the contents of output.txt after the following code snippet is run?

<?php

$str = ‘abcdefghijklmnop’;

$fp = fopen(“output.txt”, ‘w’);

for($i=0; $i< 4; $i++) {

fwrite($fp, $str, $i);

}

?>

A. abcd

B. aababcabcd

C. aababc

D. aaaa

The correct answer is C. On the first iteration, $i is 0, so no data is written. On
the second iteration $i is 1, so a is written. On the third, ab is written, and on the
fourth abc is written.Taken together, these are aababc.

2. Which of the following can be used to determine if a file is readable?

A. stat()

B. is_readable()

C. filetype()

D. fileowner()

E. finfo()

07 7090 ch06 7/16/04 8:44 AM Page 113

114 Chapter 6 File Manipulation

The correct answers are A and B. stat() returns an array of information about a
file, including who owns it and what its permission mode is.Together these are
sufficient to tell if a file is readable. is_readable(), as the name implies, returns
true if a file is readable.

3. Specifying the LOCK_NB flag to flock() instructs PHP to

A. Return immediately if someone else is holding the lock.

B. Block indefinitely until the lock is available.

C. Block for a number of seconds dictated by the php.ini setting
flock.max_wait or until the lock is available.

D. Immediately take control of the lock from its current holder.

The correct answer is A.The LOCK_NB flag instructs PHP to take a nonblocking
lock, which immediately fails if another process holds the lock.

4. If you have an open file resource, you can read data from it one line at a time with
the _____ function.

The correct answer is fgets().

5. Which of the following functions require an open file resource?

A. fgets()

B. fopen()

C. filemtime()

D. rewind()

E. reset()

The correct answers are A and D. fgets() and rewind() both act on an open file
resource. fopen() opens files to create resources, whereas filemtime() takes a file-
name and reset() acts on arrays.

07 7090 ch06 7/16/04 8:44 AM Page 114

7
Managing Dates and Times

Terms You’ll Need to Understand
n UNIX time stamp
n UNIX epoch
n date arrays
n UTC
n Format strings

Techniques You’ll Need to Master
n Handling dates in PHP
n Getting the current date
n Converting a string into a date
n Formatting dates and times

In this chapter, you will learn how to parse and manipulate dates and times in PHP.
Handling dates and times is an important day-to-day skill for many PHP programmers.
You will learn how to generate times from various date formats and multiple ways of
formatting dates in strings.

How PHP Handles Dates
In PHP, you deal with dates and times in three basic formats:

n UNIX time stamps
n Date arrays
n String-formatted dates

08 7090 ch07 7/16/04 8:44 AM Page 115

116 Chapter 7 Managing Dates and Times

Internally, PHP uses UNIX time stamps, which are the standard method of telling time on
UNIX systems. UNIX time stamps tell the number of seconds that have passed since the
UNIX epoch, which is defined as 00:00:00 January 1, 1970 in Coordinated Universal
Time (abbreviated UTC). UTC was originally referred to as Greenwich Mean Time (or
GMT), and the use of GMT is still common in colloquial usage (for example, in time
zone names and in PHP function names).

Note
Coordinated Universal Time is abbreviated UTC because the French and English representatives to the stan-

dardization board could not agree to use the English (CUT) or French (TUC) abbreviations for the term and

thus agreed on UTC as a compromise.

The current UNIX time stamp at the writing of this text is 1086455857, which corre-
sponds to June 5, 2004 13:17:37 eastern daylight time.

As PHP’s internal date format, UNIX time stamps are the common meeting ground
for all the PHP date and time functions in that they all either take time stamps and ren-
der them into other formats, or take other formats and render them into time stamps.
Because UNIX time stamps are integers, the various PHP date functions are only guar-
anteed to handle dates between 1970 and January 19, 2038 (corresponding with the
maximum value of a signed 32-bit integer; on 64-bit systems this range is extended
effectively indefinitely).

A more human-readable format that PHP can easily convert into its internal format is
date arrays.A date array is an array consisting of the elements shown in Table 7.1.

Table 7.1 Elements in a Date Array

Key Value

seconds Number of seconds (0–59)

minutes Number of minutes (0–59)

hours Number of hours (0–23)

mday Day of the month (1–31)

mon Month of the year (1–12)

year Year

wday Day of the week (0–6)

yday Day of the year (0–366)

weekday Text representation of the day of the week (Sunday–Saturday)

month Text representation of the month (January–December)

Additionally, PHP supports writing (and to a limited extent, reading) arbitrarily format-
ted date strings. Formatted date strings are most commonly used for presentation, but are
clumsy for internal storage as they are more difficult to sort, manipulate, and parse than
both UNIX time stamps and date arrays.

08 7090 ch07 7/16/04 8:44 AM Page 116

117Getting a Date Array

Getting the Current Time Stamp
The simplest way to get the current UNIX time stamp in PHP is to call the function
time(), which returns the current UNIX time stamp. Here is an example that prints out
its value:

print “The current UNIX time stamp is “.time();

If seconds-only granularity is not enough precision, you can use the
gettimeofday()function. gettimeofday() returns an array consisting of the following
key-value pairs:

sec The current UNIX time stamp

usec The number of microseconds past sec

minuteswest The number of minutes offset from UTC (‘west’ of Greenwich)

dst A flag to denote if it is currently daylight savings time

The microsecond information in gettimeofday() is useful for adding profiling informa-
tion to code.An example follows:

function get_timer()

{

$tm = gettimeofday();

return $tm[‘sec’] + ($tm[‘usec’]/1000000);

}

$start = get_timer();

sleep(1);

$finish = get_timer();

print “sleep(1) took “.($finish - $start).” seconds.”;

Getting a Date Array
To get a date array, you can use the getdate() function.The getdate() function takes a
UNIX time stamp as its first parameter and returns the date array for that time stamp in
your current time zone (not UTC). If you don’t pass any arguments to getdate(), it
will return the date array for the current time. Here’s an example that outputs the whole
date array for the current time:

$now = getdate();

print_r($now);

This outputs

Array

(

[seconds] => 37

[minutes] => 23

08 7090 ch07 7/16/04 8:44 AM Page 117

118 Chapter 7 Managing Dates and Times

[hours] => 16

[mday] => 5

[wday] => 6

[mon] => 6

[year] => 2004

[yday] => 156

[weekday] => Saturday

[month] => June

[0] => 1086467017

)

Notice that the UNIX time stamp corresponding to the date returned is stored in
index 0.

Optionally, you can use the localtime() function that mimics the C function of
the same name. localtime() is almost identical to getdate() with a few important
differences:

n By default, the date array that is returned is indexed and not associative.
n The month returned is in the range 0–11, where January is 0.
n The year is returned as the year since 1900.Thus 2004 is represented as 104.

Like getdate(), if you call localtime() with no arguments, it will return information
for the current time.You can also pass localtime() a UNIX time stamp, and it will
return you the date array for that. For example, to get the date array for now

$now = localtime();

Running this right now (on Saturday, June 5, 2004), $now is set to:

Array

(

[0] => 30 // seconds

[1] => 53 // minutes

[2] => 15 // hours

[3] => 5 // day of the month

[4] => 5 // month of the year (0-11, NOT 1-12)

[5] => 104 // years since 1900

[6] => 5 // day of the week

[7] => 155 // day of the year

[8] => 1 // daylight savings time flag

)

Alternatively, you can set a second optional parameter to 1 to have the array returned to
you as an associative array. Here is an example of how to extract the date array for exact-
ly one day ago as an associative array:

$yesterday = localtime(time() - 24*60*60, 1);

08 7090 ch07 7/16/04 8:44 AM Page 118

119Formatting a Date String

Now $yesterday is set to the following:

Array

(

[tm_sec] => 19

[tm_min] => 1

[tm_hour] => 16

[tm_mday] => 4

[tm_mon] => 5

[tm_year] => 104

[tm_wday] => 5

[tm_yday] => 155

[tm_isdst] => 1

)

Formatting a Date String
To create a formatted date string from a UNIX time stamp, PHP provides two families
of functions—date() and strftime(). Both perform the same basic operation, but dif-
fer in the formatting tokens that they use.

The first of these functions is date(). date() takes a format string and a UNIX time
stamp and fills out the format accordingly. If the time stamp is omitted, the current time
is used.The formatting tokens available to date() are summarized in Table 7.2.

Table 7.2 date() Formatting Tokens

Character Description

a Lowercase am/pm

A Uppercase AM/PM

d Day of the month (01–31)

D Three letter day abbreviation (Sun–Sat)

F Name of the month (January–December)

g Hour, 12-hour format without leading zeros (1–12)

G Hour, 24-hour format without leading zeros (0–23)

h Hour, 12-hour format with leading zeros (01–12)

H Hour, 24-hour format with leading zeros (00–23)

i Minutes with leading zeros (00–59)

j Day of the month without leading zeros (1–31)

I 1 if date is daylight savings time, else 0

l Full text day of the week (Sunday–Saturday)

L 1 if current year is a leap year, else 0

m Number of the month with leading zeros (01–12)

M Three letter month abbreviation (Jan–Dec)

08 7090 ch07 7/16/04 8:44 AM Page 119

120 Chapter 7 Managing Dates and Times

n Number of the month without leading zeros (1–12)

O UTC offset in hours (-1200–+1200)

r RFC 2822 formatted date

s Seconds, with leading zeros (00–59)

S English ordinal counting suffix for day of the month(st, nd, rd, and so on)

t Number of days in the current month

T Time zone (EST, PST, and so on)

U UNIX time stamp

w Day of the week (0–6)

W ISO-8601 week number of the year (1–52)

Y Year, 4-digit format (2004, and so on)

z Day of the year (0–365)

Z UTC offset in seconds (-43200–+43200)

The following code will print the line ‘The time is now 6:05 PM’ (or whatever the
current time is when you run it):

print “The time is now “.date(‘g:i A’);

When assembling a date string, any character that is not a recognized formatting token
will be printed as is.To print a literal character that is a formatting character, you need to
escape it in the format string with a backslash. For example, an ISO-8601 date string
looks like the following:

2004-06-05T18:05:01-0500

To print this out with date, your format string will look like this:

$iso8601 = date(‘Y-m-d\TH:i:sO’);

Notice that the dashes and colons are represented literally, but the ‘T,’ which is also a for-
matting character, needs to be escaped.

date() always formats its output relative to your machine’s time zone.To format
dates in UTC, you can use the gmdate() function.To see the difference, compare the
output of

print “The local ISO-8601 date string is “. date(‘Y-m-d\TH:i:sO’);

and

print “The UTC ISO-8601 date string is “. gmdate(‘Y-m-d\TH:i:sO’);

When I run both fragments at 6:05 p.m. eastern standard time, the first code outputs the
following:

The local ISO-8601 date string is 2004-06-05T18:05:01-0500

Table 7.2 Continued

Character Description

08 7090 ch07 7/16/04 8:44 AM Page 120

121Formatting a Date String

whereas the second outputs this:

The UTC ISO-8601 date string is 2004-06-05T23:05:01+0000

The date() function can handle most date formatting needs, but suffers from two prob-
lems:

n The use of literal characters as tokens makes complicated formatting a bit cumber-
some, as you have to escape most everything in the format.

n All the textual names returned are in English.

To remedy this problem, you can use the strftime() function, which works exactly like
date() except that it has its own formatting token set (from the C function strftime)
and all of its textual names are derived from your locale settings. On most systems, the
locale is the standard ‘C’ locale, but you can also set it to a multitude of regional prefer-
ences.

The formatting tokens available to strftime() are listed in Table 7.3.

Table 7.3 strftime() Formatting Tokens

token description

%a Short day name (Sun–Sat in the C locale)

%A Full day name (Sunday–Saturday in the C locale)

%b Short month name (Jan–Dec in the C locale)

%B Full month name (January–December in the C locale)

%c The preferred date and time representation in the current locale

%C Century number

%d Day of the month with zeros padded (01–31)

%D A shortcut for %m/%d/%y

%e Day of the month without zeros padded (1–31)

%g The 2-digit year corresponding to the ISO-8601 week number for the given day
(see %V)

%G The 4-digit year corresponding to the ISO-8601 week number for the given day
(see %V)

%h Short month name (Jan–Dec in the C locale)

%H Hour, 24-hour format with leading zeros (00–23)

%I Hour, 12-hour format with leading zeros (01–12)

%j Day of the year with leading zeros (001–366)

%m Month with leading zeros (01–12)

%M Minute with leading zeros (00–59)

%n A newline (\n)

%p Ante meridian/post meridian (a.m./p.m. in C locale)

%r Time in a.m./p.m. format (equivalent to %I:%M:%S %p in the C locale)

%R Time in 24-hour format (equivalent to %H:%M in the C locale)

08 7090 ch07 7/16/04 8:44 AM Page 121

122 Chapter 7 Managing Dates and Times

%s The UNIX time stamp

%S Second with leading zeros (00–59)

%t A tab (\t)

%T Same as %H:%M:%S

%u The day of the week as an integer, (1—7, where 1 is Monday)

%U Week number of the current year as an integer (00–53, starting with the first
Sunday as week 01)

%V The ISO 8601 week number of the current year, (01–53, where week 1 is the
first week that has at least four days in the current year and a Monday as the first
day of the week.)

%W The week number of the current year as an integer (00–53 with the first Monday
as the first day of week 01)

%x The locale-preferred representation of just the date

%X The locale-preferred representation of just the time

%y Year in two-digit format (04, and so on)

%Y The year including the century (2004, and so on)

%z The UTC offset in hours (-1200–+1200)

%Z The time zone abbreviation

%% A literal % character

Because the strftime() formatting tokens use % to mark the start of a token, it is easy
to include literal text in the format string. Here is some code that demonstrates both the
use of literal text in a format string and locale-specific formatting:

$locale = setlocale(LC_TIME, NULL);

echo strftime(“The current day in the $locale locale is %A\n”);

// Set locale to ‘French’

$locale = setlocale(LC_TIME, “fr_FR”);

echo strftime(“The current day in the $locale locale is %A\n”);

Starting with default locale settings, this outputs

The current day in the C locale is Saturday

The current day in the fr_FR locale is Samedi

Similar to date(), strftime() takes a UNIX time stamp to use as its second parame-
ter—if it is not passed, the current time is used. Here is a code block that prints the
abbreviated names of the next seven days:

for($i=0;$i<7;$i++) {

print strftime(“%a\n”, time() + $i*24*60*60);

}

Table 7.3 Continued

token description

08 7090 ch07 7/16/04 8:44 AM Page 122

123Getting a UNIX Time Stamp from a String

Also similar to date(), strftime() has a version that will print times in the UTC time
zone: gmstrftime().

Getting a UNIX Time Stamp from a Date Array
To get the UNIX time stamp for a date represented by a date array, you can use the
mktime() function. mktime() takes the following arguments (all optional):

mktime([int hour [, int minute [,int sec [, int month [, int day

➥ [, int year [, int dst]]]]]]]);

If any of the values are omitted, the appropriate values from the current time are used.
To find the UNIX time stamp for New Year’s 2000 in your time zone, you would use

the following line:

$newyears_ts = mktime(0, 0, 0, 1, 1, 2000);

On my system (eastern standard time), $newyears_ts equals 946702800.
To find out the UNIX time stamp for 3 p.m. today, you can use

$ts = mktime(15, 0, 0);

The unspecified fields (month, day, year) will default to the current day.
To get the UNIX time stamp for a UTC date array, you can use the gmmktime()

function. Here is the code to get the UNIX time stamp for New Year’s 2000 in
Greenwich, England (UTC +0000):

$newyears_ts = gmmktime(0, 0, 0, 1, 1, 2000);

Getting a UNIX Time Stamp from a String
The most complex PHP date function is strtotime(), which takes an arbitrarily for-
matted date string and attempts to parse it into a UNIX time stamp. strtotime() sup-
ports both absolute time formats such as ‘October 10, 1973’, as well as relative time
formats such as ‘next Tuesday 10am’. strtotime() uses the same date-parsing engine
as the GNU system utility tar, so any date format supported there is supported by str-
totime() as well.

Here is an example of using strtotime() to get the UNIX time stamp of today at
six o’clock:

$ts = strtotime(“Today 6 pm”);

or, alternatively

$ts = strtotime(“Today 18:00”);

strtotime() can be cleverly confusing, though. If instead of “Today 6 pm” you
had used “Today at 6 pm”, your time stamp would not be correct.This is because
strtotime() interprets “at” as the time zone for the Azores and adjusts the time stamp
accordingly.

08 7090 ch07 7/16/04 8:44 AM Page 123

124 Chapter 7 Managing Dates and Times

Also, certain time formats can befuddle strtotime(). For example, this code will
cause $ts to be set to -1, indicating an error:

$ts = strtotime(“Fri, 9 Jan 2004 03:26:23 +0000 GMT”);

strtotime() has become confused because two separate time zone offsets (+0000 and
GMT) were both specified. If you are manually constructing all the inputs to strtotime()
(for example, to take advantage of the next week/last week functionality) this is not
an issue, as you can test your inputs to make sure that they are all correctly handled.
However, if you are using strtotime() to handle arbitrarily formatted date entries (for
example, submitted free form through a web page), you should take into account the
possibility of both incomprehensible and improperly interpreted dates.

One of the best aspects of strtotime() is using it to handle leap years and daylight
saving time. If you need to find the time stamp for the current time tomorrow, you can-
not simply look 24 hours in the future, as it might be 23 or 25 hours if you cross a day-
light saving time boundary. strtotime() takes this into account, though; so to find a this
time tomorrow, you could just say

$tomorrow = strtotime(“tomorrow”)

Because you did not specify a time, strtotime() uses the current value.

Exam Prep Questions
1. Which of the following sentences are incorrect?

A. date() returns the current UNIX datestamp.

B. date() returns a formatted date string.

C. date() requires a time stamp to be passed to it.

D. date() returns a date array.

The correct answers are A, C, and D. date() takes a format string and an optional
time stamp and produces a formatted date string. If a UNIX time stamp is not
passed into date(), it will use the current time.

2. The ________ function will return the current UNIX time stamp.

The correct answer is time().

3. Which of the following functions will output the current time as 11:26 pm?

A. print date(‘H:m a’);

B. print date(‘G:M a’);

C. print date(‘G:i a’);

D. print strftime(‘%I:%M %p’);

The correct answers are C and D.

08 7090 ch07 7/16/04 8:44 AM Page 124

125Exam Prep Questions

4. The PHP date functions are only guaranteed to work for dates after _____.

A. January 1, 1970 00:00:00

B. January 1, 1900 00:00:00

C. January 1, 1963 00:00:00

D. January 18, 2038 22:14:07

The correct answer is A.The UNIX epoch is January 1, 1970 00:00:00 UTC. On
32-bit systems, the date functions are only guaranteed to work until January 19,
2038.

5. Internally PHP handles dates and times as

A. A ‘date array’ array consisting of the year, month, day, hour, minute, and
second.

B. A UNIX time stamp representing the number of seconds since the UNIX
epoch.

C. An ISO-8601 date entity.

D. A UNIX time stamp consisting of the number of microseconds since the
UNIX epoch.

The correct answer is B. PHP stores all its dates internally as UNIX time stamps,
which are defined as the number of seconds since the UNIX epoch, January 1,
1970 00:00:00 UTC.

08 7090 ch07 7/16/04 8:44 AM Page 125

08 7090 ch07 7/16/04 8:44 AM Page 126

8
Managing Email

Introduction

Terms You’ll Need to Understand

n sendmail wrapper
n SMTP
n Headers
n MIME encoding
n SMTP (Windows only)
n smtp_port (Windows only)
n sendmail_from (Windows only)
n sendmail_path

Techniques You’ll Need to Master

n Mail functions
n URL functions

How Email Is Delivered
If you are going to be writing and deploying PHP scripts that generate and send email
messages, you need to know something about how email gets delivered around the
Internet.This will help you better understand and support your customers when prob-
lems arise. Figure 8.1 shows the main components of the email architecture.

09 7090 ch08 7/16/04 8:45 AM Page 127

128 Chapter 8 Managing Email

Figure 8.1 How email is delivered.

Here are the standard terms that you will come across at some point or another.

MTA—Mail Transport Agent
When email is sent from organization to organization, it is sent from email server to
email server.The software that runs on your email server and handles sending and
receiving email from around the Internet is called the Mail Transport Agent (MTA for
short). Examples of Mail Transport Agents are

n sendmail
n postfix
n qmail
n Microsoft Exchange
n Lotus Notes

Mail transport agents talk to each other using the SMTP network protocol.

SMTP—Simple Mail Transport Protocol
The Simple Mail Transport Protocol (SMTP) is the standard network-layer protocol for
transmitting an email message across the Internet.

Servers normally listen for incoming SMTP connections on port 25.

MX Records
When an MTA has an email message to send to another MTA, it has to convert the
address in the To:, Cc:, or Bcc: line into an IP address. Everything after the @ sign in the
address is taken to be the email domain.This is normally something such as @php.net.

Sends email via SMTP
May authenticate via SASL

Receives email via
IMAP or POP3

Mail Server
(runs MTA)

DNS Server
(provides MX records)

Requests MX
records via DNS

Sends email via SMTP

Personal Computer
(runs MUA)

Sends email via SMTP
May authenticate via SASL

Receives email via
IMAP or POP3

Mail Server
(runs MTA)

DNS Server
(provides MX records)

Requests MX
records via DNS

Personal Computer
(runs MUA)

Resolves hostnames via DNS

09 7090 ch08 7/16/04 8:45 AM Page 128

129How Email Is Delivered

The email domain isn’t the real name of a server. It looks like a real name (and has to
follow the same rules), but it isn’t. It’s actually a special kind of DNS alias.

To receive email for your email domain, you have to add an MX record for that email
domain to your DNS server.

Note
If you don’t set up an MX record in your DNS server, the MTA will look for a matching A record instead.

MUA—Mail User Agent
The Mail User Agent (MUA) is the jargon name for an email client.

Examples of Mail User Agents are
n Outlook Express
n Evolution
n KMail
n pine
n mutt
n Hotmail

A PHP script that sends email is also a type of Mail User Agent.
Mail User Agents read email directly from files on disk, via network protocols such as

POP3 or IMAP, or via proprietary network protocols (as used by Microsoft Exchange).
Mail User Agents normally send their email by connecting to a Mail Transport Agent

over the network via the SMTP network protocol. Some UNIX-based Mail User Agents
might send their email instead by executing a sendmail wrapper program.

When a Mail User Agent connects to an MTA via SMTP to send email, it might use
SASL to authenticate the user.

SASL—Simple Authentication and Security Layer
The Simple Authentication and Security Layer (SASL) is a tried and trusted way to bolt
user-authentication onto existing network protocols. SMTP has been extended (via the
SMTP AUTH command) to support SASL.

If an MTA has been configured to require authentication, only MUAs with built-in
support for the SMTP AUTH command will be able to connect to send email.

Other Emerging Technologies
Although email is as old as the Internet itself, the rise of unsolicited bulk email (com-
monly called spam), the increasing number of modern viruses that transmit themselves
via email, and the fraudulent use of genuine email addresses for criminal intent mean
that we are at the start of a period of great change in how email will be delivered in the
future.

09 7090 ch08 7/16/04 8:45 AM Page 129

130 Chapter 8 Managing Email

Junk email filters have become very popular.They can be added both to the MTA
and/or the MUA. It’s a fair bet that most of the email that these filters mark as ‘junk’
never gets read by a human. Junk email filters aren’t perfect; genuine email that looks
very like real junk email will also get marked as junk.When you roll out a PHP applica-
tion that sends email, you should perform some tests with your customer to make sure
that your email will get past whatever junk email filter your customer uses.

Because of repeated security holes in MUAs, the more tech-savvy businesses and users
do not accept delivery of HTML email. It’s very tempting to send HTML email—such
emails look so much nicer than plain-text email.You should ensure that any PHP appli-
cation you write that sends email always gives the user the option to choose between
plain-text email and HTML email.You should never only support HTML email.

If you write and sell PHP software that works with email, it’s important that you keep
abreast of the new technologies that are always coming out.When capturing require-
ments from your customer, always make sure that you’ve agreed what email technologies
the customer has adopted—or is planning to adopt within six months of the end of your
project.The customer will (somewhat naively) expect your PHP application to work
perfectly with whatever changes he plans to make to his email infrastructure—and will
blame you if it doesn’t.

Preparing PHP
Before you can send email from your PHP script, you must first ensure that your copy of
PHP has been correctly configured.

If You Are Using PHP on UNIX
To send email from a PHP script running on UNIX, you must have a sendmail-
compatible MTA installed on the same server that your PHP script runs on.

On UNIX systems, PHP sends email by running the command-line program
sendmail. sendmail is the de facto standard MTA for UNIX systems.
If you are using an alternative to sendmail, it must provide a sendmail wrapper.A

sendmail wrapper is a drop-in replacement for the sendmail command-line program. It
must accept the -t and -i command-line switches at the very least.

When PHP is compiled, the configure script searches for the sendmail command in

/usr/bin:/usr/sbin:/usr/etc:/etc:/usr/ucblib:/usr/lib

If configure cannot find the sendmail command, then sendmail support will be per-
manently disabled.The following PHP functions will either be missing entirely, or will
always return an error:

n mail()—will be missing
n ezmlm_hash()—will be missing
n mb_send_mail()—will always return false

09 7090 ch08 7/16/04 8:45 AM Page 130

131Preparing PHP

When this happens, you must install a sendmail wrapper, and then recompile PHP.
Once PHP is compiled with sendmail support enabled, whenever your script sends
email, PHP will use the sendmail command discovered by the configure script. If you
ever need to override this default, set the sendmail_path in php.ini to point to the
sendmail command that you want PHP to use.

sendmail_path = ‘/usr/local/bin/sendmail’

If You Are Using PHP on Windows or Netware
Although not documented in the PHP Manual, if you set the sendmail_path setting in
your php.ini file, PHP will attempt to send email via the sendmail_wrapper—behaving
exactly as if PHP were running on UNIX.This can catch you out, so remember to look
for it when troubleshooting email problems.

If you do not have a sendmail wrapper available, PHP on Windows talks to the mail
transport agent (MTA) directly via the SMTP network protocol. PHP needs to be con-
figured to tell it where to find your MTA:

n The SMTP setting in php.ini must be set to the hostname (or IP address) of the
email server that your MTA is running on.The default value is localhost.You
will probably want to change that.

n The smtp_port setting in php.ini must be set to the port that your MTA is lis-
tening on.The default value is 25.You probably will not need to change that.

Note
It isn’t documented in the PHP Manual, but PHP on Novell Netware uses the same code for email support as

PHP on Windows.

Caution
It is currently not possible to get PHP on UNIX to talk directly to the MTA via SMTP.

PHP on Windows does not support SASL. If your MTA is configured to require authen-
tication, you will need to change the security on your MTA to enable PHP to send
emails through successfully.

On UNIX, the MTA will automatically say that the email is from whichever user
your PHP script is running as.

This can’t be done on Windows because PHP is connecting to the MTA over the
network via SMTP. Instead, PHP will work out who the email is from by looking in
these places in this order:

n the from: header line passed to the mail() function
n the sendmail_from setting in the php.ini file

09 7090 ch08 7/16/04 8:45 AM Page 131

132 Chapter 8 Managing Email

PHP will display an error and refuse to send the email if it cannot determine who the
email is from.

If you compile your own version of PHP on Windows, and you are going to use it to
send emails, it’s important that you build PHP with the Perl-compatible regular expres-
sion (PCRE) library included. PHP on Windows relies on the PCRE functions to make
sure that headers have the correct end of line character. If you build PHP on Windows
without PCRE support, you might find that MTAs refuse to accept your emails for
delivery.

With PHP correctly configured, you can now send email from your PHP scripts.

Sending Email
Use the PHP function mail() to send an email message from a PHP script.

The first parameter of the mail() function is the email address to send the email
message to.

Assuming that you are running your PHP script on the server that is the MTA for
the example.com email domain, and that there is a local user called fred, all of these are
valid email addresses:

n fred

The MTA thinks you are trying to send an email to the local user fred.
n fred@example.com

This is the normal form for an email address, and the one that you are probably
most familiar with.

n fred @ example.com

The MTA will automatically collapse the whitespace in the email address.

Although perfectly legal, email addresses with whitespace are seldom seen today.
n “Fred Bloggs” <fred@example.com>

The MTA will automatically extract the fred@example.com from between the
angular brackets.

The entire string will be added as is to the From: line of the email message.

Note that the double quotes are important—do not leave them out.

Sending an Email to More Than One Recipient
Add additional addresses to the to parameter. Separate them by a comma and a space:

fred, joe@example.com, “Jane Doe” <jane.doe@example.com>

If you want to cc: or bcc: an email to someone, do this by adding additional headers to
your email.

09 7090 ch08 7/16/04 8:45 AM Page 132

133Formatting an Email Message

Managing Email Headers
Email headers are lines of text that go at the start of an email message. Headers hold
information used by MTAs and MUAs. If you pass a list of additional headers into the
mail() function, it will automatically add these headers to your email message. Each
header in the list must be separated by \r\n.

The Cc: and Bcc: Headers
The Cc: and Bcc: headers allow you to send a copy of an email message to other people.
All recipients will be able to see the list of addresses in the To: and Cc: lines of the email,
but will not be able to see the list of addresses in the Bcc: line.

The Cc: and Bcc: headers are optional. If you provide either of them (or both of
them), they must follow the same rules about email addresses as the to parameter to
mail().

The From: Header
The From: header tells the MTA who is sending the email message.

If you do not provide a From: header, PHP might or might not add one for you:
n If you are sending email via the sendmail wrapper, PHP will leave it to the MTA

to add a default From: header.
n If you are sending email on Windows without using the sendmail wrapper, PHP

will use the sendmail_from setting in php.ini to set a default From: header.

Setting the Subject
The second parameter to mail() is a string containing the “subject” of the email.
Whatever you put in this string will appear in the Subject: header of the email.

Formatting an Email Message
The third parameter to mail() is the email message itself.

Plain-Text Emails
Plain-text emails are normal 7-bit US-ASCII strings with each line terminated by \r\n.
The following code will send a plain-text email, as long as PHP is configured to correct-
ly send email and the MTA is working, too.

Note
Some MTAs on UNIX will accept messages that just use \n as the end-of-line sequence. This is nonstandard

behavior, and you should expect to have problems eventually.

09 7090 ch08 7/16/04 8:45 AM Page 133

134 Chapter 8 Managing Email

<?php

// who is the email going to?

// change this to be *your* email address ;-)

$to = “stuart”;

// what is the message?

$message = “This is my first email message, sent from PHP.\r\n”

. “This is a second line of text\r\n”;

// who else do we want to send the message to?

$more_headers = “Cc: stuart\r\n”;

// send the email

$result = mail (

$to,

“My first e-mail sent from PHP”,

$message,

$more_headers

);

?>

By default, all emails sent via mail() are plain-text emails. If you want to send HTML
emails, you need to create a simple MIME-encoded email.

Basic HTML Emails
The Multipurpose Internet Mail Extensions (MIME) define a standardized way of sending
emails with attachments, and/or with content that isn’t 7-bit US-ASCII.

You can find a reference to the MIME standard in the “Further Reading” section at
the end of this chapter.

To send a basic HTML email, all you need to do is this:
n Add these additional headers:

MIME-Version: 1.0

Content-Type: text/html; charset=”iso-8859-1”

Content-Transfer-Encoding: 7bit

n Pass your HTML content in a string as the third parameter to mail().

09 7090 ch08 7/16/04 8:45 AM Page 134

135Attaching a File to a Message

Any images, links, stylesheets—anything at all that the web browser has to download—
must be full URLs. Note that, for security and privacy reasons, most email clients will
not automatically download anything that’s referenced in an HTML email.

If you want to add images to your email, you need to use attachments.

Attaching a File to a Message
To attach a file to an email message, you have to create a multipart MIME message.

n Pass these headers as the fourth parameter to mail():

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=”php-12345”

Note the boundary on the end of the Content-Type.The boundary is an arbitrary
US-ASCII string that tells MUAs when the end of a MIME block has been
reached.You can set it to be whatever you want, provided you set it to something
that isn’t going to appear in your email message.

n The first part of your message string should be a plain text message like this:

If you are reading this, it means that your email client does not

support MIME. Please upgrade your email client to one that sup-

ports MIME.

—php-12345

Note the boundary marker after the message.This tells MIME that you’ve reached
the end of this particular part of the email message.You can now add more parts to
your email message.

n The second part of your “message” string should be the message itself.You need to
add Content-Type and Content-Transfer-Encoding headers to the message, fol-
lowed by the message itself.

Content-Type: text/plain; charset=”iso-8859-1”

Content-Transfer-Encoding: 7bit

Hello, this is my plain text message. If you can see this, then

hopefully my MIME email is working fine.

—php-12345

Note the boundary marker after the message.You have to put the boundary mark-
er at the end of each part of the message.

n Next come the attachments. Each attachment gets added to the “message” string as
well.You need to add Content-Type and Content-Transfer-Encoding headers,
and then the attachment.

If the attachment isn’t plain text, you should encode it using base64 encoding:

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

<message goes here>

09 7090 ch08 7/16/04 8:45 AM Page 135

136 Chapter 8 Managing Email

—php-12345

<?php

// who is the email going to?

// change this to be *your* email address ;-)

$to = “stuart”;

// what is the message?

$message = “This is my third email sent from “

. “PHP.\r\n”

. “This email has an attached image\r\n”;

// don’t forget our blank line

$blank_line = “\r\n”;

// define our boundary

$boundary_text = “php-12345”;

$boundary = “—” . $boundary_text . “\r\n”;

$last_boundary = “—” . $boundary_text . “—\r\n”;

// add the MIME headers

$more_headers = “MIME-Version: 1.0\r\n”

. “Content-Type: multipart/mixed; boundary=\””

. $boundary_text

. “\”\r\n”;

// create the first part of the message

$mime_message = “If you are reading this, it means that your e-mail client\r\n”

. “does not support MIME. Please upgrade your e-mail client\r\n”

. “to one that does support MIME.\r\n”

. $boundary;

// add the second part of the message

$mime_message .= “Content-Type: text/html; charset=\”iso-8859-1\”\r\n”

. “Content-Transfer-Encoding: 7bit\r\n”

. $blank_line

. $message

. $boundary;

09 7090 ch08 7/16/04 8:45 AM Page 136

137Attaching a File to a Message

// now add the attachment

$mime_message .= “Content-Type: image/gif; name=\”php.gif\”\r\n”

. “Content-Transfer-Encoding: base64\r\n”

. “Content-disposition: attachment; file=\”php.gif\”\r\n”

. $blank_line

. chunk_split(base64_encode(file_get_contents(“php.gif”)))

. “\r\n”

. $last_boundary;

// send the email

$result = mail (

$to,

“My first HTML e-mail with an attachment”,

$mime_message,

$more_headers

);

?>

You can add as many attachments as you want, but remember—they can make the email
quite large to download, and many users are still using dial-up rather than broadband!

The last boundary marker in the email message must end with —. For example, if our
boundary marker is

—php-12345

the last marker in the email message would be

—php-12345—

instead.

Attached Images for HTML Emails
HTML emails will attempt to download their images and stylesheets from your web
server. Because of security and privacy reasons, many MUAs will refuse to attempt these
downloads, ruining the look of your HTML email message.

You can add your images as attachments to your email, and then point your HTML
at the attached images:

n Change the first Content-Type of your email to be multipart/related. Don’t
forget to include the boundary definition.

n When you add an image as an attachment, include this additional header:

Content-Location: URL

URL is the URL that you use inside the tag to include your image.

09 7090 ch08 7/16/04 8:45 AM Page 137

138 Chapter 8 Managing Email

<?php

// who is the email going to?

// change this to be *your* email address ;-)

$to = “stuart”;

// what is the URL of the image?

$image = http://static.php.net/www.php.net/images/php.gif;

// what is the message?

$message = “This is my fourth email sent from “

. “PHP.\r\n”

. “This email has an image “

. “<img src=\””

. $image

. “\”> here.\r\n”;

// don’t forget our blank line

$blank_line = “\r\n”;

// define our boundary

$boundary_text = “php-12345”;

$boundary = “—” . $boundary_text . “\r\n”;

$last_boundary = “ . $boundary_text . “—\r\n”;

// add the MIME headers

$more_headers = “MIME-Version: 1.0\r\n”

. “Content-Type: multipart/related; boundary=\””

. $boundary_text

. “\”; type=\”text/html\”\r\n”;

// create the first part of the message

$mime_message = “If you are reading this, it means that your e-mail client\r\n”

. “does not support MIME. Please upgrade your e-mail client\r\n”

. “to one that does support MIME.\r\n”

. $boundary;

// add the second part of the message

$mime_message .= “Content-Type: text/html; charset=\”iso-8859-1\”\r\n”

. “Content-Transfer-Encoding: 7bit\r\n”

. $blank_line

. $message

. $boundary;

09 7090 ch08 7/16/04 8:45 AM Page 138

139A Word About Email Delivery

// now add the attachment

$mime_message .= “Content-Type: image/gif; name=\”php.gif\”\r\n”

. “Content-Transfer-Encoding: base64\r\n”

. “Content-Location: “

. $image

. “\r\n”

. $blank_line

. chunk_split(base64_encode(file_get_contents(“php.gif”)))

. “\r\n”

. $last_boundary;

// send the email

$result = mail (

$to,

“My first HTML e-mail with an embedded image”,

$mime_message,

$more_headers

);

?>

Using Extra Command-Line Parameters
The fifth argument to mail() is a list of parameters to use when executing the sendmail
wrapper.

These parameters have no effect at all if you are using PHP on Windows without a
sendmail wrapper.

A Word About Email Delivery
mail() returns TRUE if the email is accepted for delivery.This does not guarantee that
the email will be delivered.

Internet email is an unguaranteed delivery system.
Email messages can be lost at any point between your MTA and your user’s MUA.

This is often caused by a catastrophic disk failure on an MTA, combined with inade-
quate backups.When email messages are lost, there is no automatic mechanism to trigger
re-sending the email message. Lost email messages are never delivered to the intended
recipient.

A more common problem is email messages that get rejected by the user’s MTA.
Causes include

n Inbox over quota
n Email too large to accept

09 7090 ch08 7/16/04 8:45 AM Page 139

140 Chapter 8 Managing Email

n Disabled user account
n Misspelled email address name
n Virus scanner detected a virus in an attachment

When an MTA rejects an email message, it normally sends back the email message with
a description of why the email was rejected.These ‘bounced’ email messages are never
delivered to the intended recipient.

If the email message is successfully delivered to the intended recipient, this can still
cause problems.The user might use a filter that bounces email from senders not in a
whitelist.The user might have set up a vacation auto-responder, which automatically
sends back a message saying that the user is currently out of the office.

It’s therefore essential that your PHP application can cope with these situations:
n Every single email you send should have a valid Reply-To: header, to allow receipt

of bounced email messages.You should set up a mailbox just for bounces to emails
sent from your PHP scripts. It’s a good idea to have someone go through the mail-
box once a day, just in case there is anything you can do about the bounced email.

n Normally, there should be a way for the user of your PHP script to make your
script send the email again.

n Any order confirmations, receipts, and invoices that you send via email should also
be available through some other means—either via your website, or via snail mail.
Apart from being good customer service, many of these documents are legally
important.

Further Reading
The standards for email handling are defined by the RFC series of documents, which
you can find at http://www.rfc-editor.org/.

n RFC’s 821 and 822 are the current standards on SMTP and plain-text emails,
respectively.

n RFC’s 2045, 2046, 2047, 2048, and 2049 define the MIME standard.
n RFC 1896 discusses the “text/enriched” MIME content type.This is very simi-

lar—but not the same as—HTML email.
n RFC 2557 defines the use of Content-IDs to use attached images in HTML

emails.
n RFC 2554 defines the use of SASL for authenticating connections to an MTA.
n Internet Mail Consortium home page http://www.imc.org/. In particular,

http://www.imc.org/terms.html is an excellent reference.

09 7090 ch08 7/16/04 8:45 AM Page 140

141Exam Prep Questions

Exam Prep Questions
1. Your company sells a shopping cart written in PHP. Matching common industry

practice, the shopping cart sends a confirmational email to the user after he has
checked out.

Your team has just ported the shopping cart from PHP on Gentoo Linux to PHP
running on Windows Server 2003.They’ve correctly set the SMTP, smtp_port, and
sendmail_from settings in php.ini, but this error appears when the shopping cart
tries to send the confirmation email:

Could not execute mail delivery program ‘sendmail’

This is your team’s first project using Windows Server, and everyone’s a bit con-
fused as to why this error is happening.The php.ini settings work fine on Linux,
so what could be the problem?

Choose from one of the following:

A. The smtpserver service hasn’t been started.

B. sendmail_path in php.ini needs to be commented out.

C. Microsoft Exchange needs configuring to accept email from PHP.

D. PHP cannot send email when running on Windows.

The correct answer is B.

2. Flush with the success of the shopping cart on Windows Server 2003, your com-
pany has decided that it would be a good idea to add Solaris to the list of support-
ed operating systems. Because the shopping cart is already proven to work on
Linux, it should be no trouble at all to get the cart working on Solaris.

Your team goes out and buys a new Sun server.As Solaris doesn’t come with PHP,
you have to compile PHP by hand.At the same time, your network administrator
decides to un-install the Solaris version of sendmail and replace it with the compa-
ny’s standard MTA—postfix—instead. He forgets to tell you that he’s done this.

When the time comes to test your shopping cart on Solaris, there’s a problem.
When the shopping cart tries to send the confirmation email, you get this error
message:

Call to undefined function: mail()

What can you do to fix this problem?

A. Put an @ symbol in front of your call to mail() so that PHP does not out-
put the error message.

B. Put sendmail back on the machine. Postfix doesn’t provide a sendmail wrap-
per anyway.

09 7090 ch08 7/16/04 8:45 AM Page 141

142 Chapter 8 Managing Email

C. Use mb_send_mail() instead.

D. Recompile PHP—after asking your network administrator to leave the
MTA alone until the recompilation of PHP has completed

The correct answer is D.

3. All the new customers you’re attracting on Solaris are very pleased with your
shopping cart.Your product is earning them a lot of new customers also.

However, like all customers, they want new features. Specifically, they want you to
create and attach a simple comma-separated file that users can import into prod-
ucts such as Microsoft Money.This will make it easier for customers to manage
their finances. Besides, it’s a cool feature that none of your competitors have, so the
marketing department has told your boss to get it done.

At the moment, the shopping cart sends out RFC-822–compliant plain-text
emails.What do you need to change to make it send the attachment as well?

Choose from one of the following:

A. Replace your plain-text emails with MIME-encoded emails.

B. Refuse to do it. RFC-822 doesn’t allow attachments, and your company
should not be shipping products that go against Internet standards.

C. Put the CSV file on a web server, and put a link to it in the email.

D. Ditch PHP’s built-in mail() function, and use the system() command to
call sendmail directly.

The correct answer is A.

4. A rival has just launched a new version of his shopping cart. Unlike yours—which
only sends plain-text emails—his shopping cart sends out confirmation emails that
look more like a web page.These emails look so much nicer, and he’s starting to
eat into your sales as a result. It’s a good thing his cart only runs on Windows; oth-
erwise, you’d have no customers left!

Something must be done, and marketing has decided that if you can’t beat them,
join them.Your long-suffering boss has been told to make your shopping cart send
out nice-looking emails too. In the best tradition of pointy-haired bosses, he’s
dumped the whole problem in your lap, and is waiting for you to tell him how
this can be done.

What could you do to make this work? Choose one or more of the following:

A. Change your emails to send text/html MIME-encoded emails.

B. It’s time to ditch mail() again and call sendmail directly.

C. Change your emails to send text/enriched MIME-encoded emails.

D. Tell your boss that this only works on Windows because PHP on Windows
handles emails very differently.

The correct answers are A and C.

09 7090 ch08 7/16/04 8:45 AM Page 142

143Exam Prep Questions

5. During testing of your new, much nicer-looking confirmation emails, you notice
that there’s a problem.The email uses quite a few images—including the all-
important company logo.All of these images are stored on your web server, and
the email uses standard “” tags to include them.The images look
great in your email client—but appear as missing images when you send the email
to your boss to show him the results of your hard work.

Your boss isn’t pleased, and neither is the marketing department, who make it very
clear that you can’t ship the code until the company logo shows up.

The good news is that it isn’t just your email.The confirmation emails sent by
your rival also have this problem. If you can figure out how to make it work, not
only will you be playing catch-up to your rival, but you’ll also be back in the lead.
This mollifies your boss, but gets you nowhere nearer to solving the problem.

What could you change to make this work? Choose one or more of the
following:

A. sendmail is too old. Replace it with a modern MTA instead.

B. Add all the images to the email as attachments with Content-Locations,
and make your email use the attachments rather than the images on the
website.

C. Add a piece of inline JavaScript in your email that temporarily changes the
security settings of the email client.This will enable the images to be down-
loaded.

D. File a bug with the author of the email client that your boss uses. Something
must be wrong with the way it handles RFC-1896–compliant email mes-
sages.

The correct answer is B—and only B.

6. With all the problems overcome, your company’s shopping cart now sends email
messages that not only look great, but also work where your rival’s do not.
Marketing is pleased, and has awarded your boss a bonus in return. Isn’t that
typical?

However, the support team leader isn’t happy. Since the release of your latest shop-
ping cart marvel, there has been a large increase of bug reports about your new
style email messages. It seems that many users won’t accept HTML emails at all,
and would like to be able to send plain-text emails instead.

Seeing as he just got a nice bonus for adding HTML emails, your boss isn’t too
sympathetic to the idea of getting rid of them again. In desperation, the support
team leader turns to you, and asks you to convince your boss.

Draft out a short email message to your boss, explaining why plain-text emails are
a good idea.As all consultants need to be politicians at heart, it might help to
think about how you can keep both your boss and the support team leader happy.

09 7090 ch08 7/16/04 8:45 AM Page 143

09 7090 ch08 7/16/04 8:45 AM Page 144

9
PHP and Databases

PHP IS USED TOGETHER WITH A DATABASE SERVER (DBMS) of some kind, and the
platform (of which the DBMS is part) is usually referred to by an acronym that
incorporates a particular brand of database—for example, LAMP stands for
Linux/Apache/MySQL/PHP.

When it comes to the certification program, however, you are not required to know
how any DBMS in particular works.This is because, in a real-world scenario, you might
find yourself in a situation in which any number of different DBMSs could be used.
Because the goal of the certification program is to test your proficiency in PHP—and
not in a particular DBMS—you will find yourself facing questions that deal with the
best practices that a PHP developer should, in general, know about database program-
ming.

This doesn’t mean that you shouldn’t expect technical, to-the-point questions—they
will just be less based on actual PHP code than on concepts and general knowledge.You
should, nonetheless, expect questions that deal with the basic aspects of the SQL lan-
guage in a way that is DBMS agnostic—and, if you’re used to a particular DBMS, this
might present a bit of a problem because the SQL language is quite limited in its nature
and each specific DBMS uses its own dialect that is often not compatible with other
database systems.

As a result, if you are familiar with databases, you will find this chapter somewhat lim-
ited in its explanation of database concepts and techniques because we are somewhat
constrained by the rules set in place by the certification process. However, you can find a
very large number of excellent resources on creating good databases and managing them,
both dedicated to a specific DBMS and to general techniques. Our goal in this chapter is
to provide you with the basic elements that you are likely to find in your exam.

10 7090 ch09 7/16/04 8:42 AM Page 145

146 Chapter 9 PHP and Databases

Terms You’ll Need to Understand
n Database
n Table
n Column
n Key
n Index
n Primary key
n Foreign key
n Referential Integrity
n Sorting
n Grouping
n Aggregate functions
n Transaction
n Escaping

Techniques You’ll Need to Master
n Creating tables
n Designing and optimizing indices
n Inserting and deleting data
n Selecting data from tables
n Sorting resultsets
n Grouping and aggregating data
n Using transactions
n Escaping user input
n Managing dates

“Databasics”
Most modern general-purpose DBMSs belong to a family known as “relational databas-
es.” In a relational DBMS, the information is organized in schemas (or databases), which,
in turn contain zero or more tables.A table, as its name implies, is a container of rows (or
records)—each one of which is composed of one or more columns (or fields).

Generally speaking, each column in a table has a data type—for example, integer or
floating-point number, variable-length character string (VARCHAR), fixed-length char-
acter string (CHAR), and so on.Although they are not part of the SQL-92 standard,

10 7090 ch09 7/16/04 8:42 AM Page 146

147“Databasics”

many databases define other data types that can come in very handy, such as large text
strings, binary strings, and sets.You can expect pretty much every DBMS to implement
the same basic types, so most of the time you won’t have much of a problem porting
data from one to the other as needed.

Indices
Databases are really good at organizing data, but they need to be instructed as to how the
data is going to be accessed.

Imagine a situation in which you have a table that contains a million telephone num-
bers and you want to retrieve a particular one. Because the database doesn’t normally
know how you’re going to access the data, its only choice will be to start at the begin-
ning of the table and read every row until it finds the one you requested.

Even for a fast computer, this could be a very costly proposition in terms of perform-
ance, particularly if the telephone number you’re looking for is at the end of the list.

To solve this problem, database systems introduce the concept of “index.” Just like the
index on your telephone directory, indices in a database table enable the server to opti-
mize the data stored in the table so that it can be retrieved quickly and efficiently.

Writing Good Indices
As you can imagine, good indexing is possibly one of most crucial aspects of a fast and
efficient database. No matter how fast your database server is, poor indexing will always
undermine your performance.What’s worse, you won’t notice that your indices are not
working properly until enough data is in a table to make an impact on your server’s
capability to retrieve information quickly in a sequential way, so you might end up hav-
ing bottlenecks that are not easy to solve in a situation in which there is a lot of pressure
on you to solve them rapidly.

In an ideal situation, you will be working side-by-side with a database administrator
(DBA), who will know the ins and outs of your server and help you optimize your
indices in a way that best covers your needs. However, even without a DBA on hand,
there are a few rules that should help you create better indices:

n Whenever you write a query that accesses data, try to ensure that your table’s
indices are going to be able to satisfy your selection criteria. For example, if your
search is limited by the contents of columns A, B, and C, all three of them should
be part of a single index for maximum performance.

n Don’t assume that a query is optimized just because it runs quickly. In reality, it
might be fast only because there is a small amount of data and, even though no
indices are being used, the database server can go through the existing information
without noticeable performance deterioration.

n Do your homework. Most DMBSs provide a set of tools that can be used to mon-
itor the server’s activity.These often include the ability to view how each query is
being optimized by the server. Spotting potential performance issues is easy when
the DBMS itself is telling you that it can’t find an index that satisfies your needs!

10 7090 ch09 7/16/04 8:42 AM Page 147

148 Chapter 9 PHP and Databases

Primary Keys
The columns that are part of an index are called keys.A special type of index uses a key
known as a “primary key.”The primary key is a designated column (or a set of columns)
inside a table whose values must always respect these constraints:

n The value assigned to the key column (or columns) in any one row must not be
NULL.

n The value assigned to the key column (or columns) in any one row must be com-
pletely unique within the table.

Primary keys are extremely important whenever you need to uniquely identify a partic-
ular row through a single set of columns. Because the database server automatically
enforces the uniqueness of the information inserted in a primary key, you can take
advantage of this fact to ensure that you don’t have any duplicates in your database.
For example, if the user “John Smith” tries to create an account in your system, you can
designate the user’s name as the primary key of a table to ensure that he can’t create
more than one account because the DBMS won’t let you create two records with the
same key.

In some database systems, the primary key also dictates the way in which records are
arranged physically by the data storage mechanism that the DBMS used. However, this
does not necessarily mean that a primary key is more efficient than any other properly
designed index—it simply serves a different purpose.

Foreign Keys and Relations
A staple of relational databases is the concept of “foreign key.”A foreign key is a column
in a table that references a column in another table. For example, if you have a table with
all the phone numbers and names of your clients, and another table with their addresses,
you can add a column to the second table called “phone number” and make it a foreign
key to the phone number in the first table.This will cause the database server to only
accept telephone numbers for insertion in the second table if they also appear in the first
one.

Foreign keys are extremely important because they can be used to enforce referential
integrity—that is, the assurance that the information between tables that are related to
each other is self-consistent. In the preceding example, by making the phone number in
the second table a foreign key to the first, you ensure that the second table will never
contain an address for a client whose telephone number doesn’t exist in the first.

Even though the SQL standard does require the ability to define and use foreign keys,
not all popular DBMSs actually implement them. Notably, MySQL versions up to 5.0
have no support for this feature.

Even if your database system doesn’t support relational integrity, you can still support
it within your applications—in fact, you will have to anyway because you will have to
advise your users appropriately when they make a mistake that would cause duplicate or
orphaned records to be created.

10 7090 ch09 7/16/04 8:42 AM Page 148

149Creating Tables or Adding and Removing Rows

Creating Tables or Adding and Removing Rows
Although the exact details of the syntax used to create a new table varies significantly
from one DBMS to another, this operation is always performed by using the CREATE
TABLE statement, which usually takes this form:

CREATE TABLE table_name

(

Column1 datatype[,

Column2 datatype[,

...]]

)

It’s important to note that a table must have at least one field because its existence would
be completely meaningless otherwise. Most database systems also implement limits on
the length of each field’s name, as well as the number of fields that can be stored in any
given table (remember that this limit can be circumvented, at least to a certain degree, by
creating multiple tables and referencing them using foreign keys).

Inserting a Row
The INSERT statement is used to insert a new row inside a table:

INSERT [INTO] table_name

[(column1[, column2[, column]])]

VALUES

(value1[, value2[, valuen]])

As you can see, you can specify a list of columns in which you are actually placing data,
followed by the keyword VALUES and then by a list of the values you want to use.Any
column that you don’t specify in your insertion list is automatically initialized by the
DBMS according to the rules you defined when you created the table. If you don’t spec-
ify a list of columns, on the other hand, you will have to provide a value for each col-
umn in the table.

Deleting Rows
The DELETE statement is used to remove one or more rows from a table. In its most basic
form, it only needs to know where the data is being deleted from:

DELETE [FROM] table_name

This command deleted all the rows from a particular table. Normally, this is not some-
thing that you will actually want to do during the course of your day-to-day opera-
tions—almost all the time, you will want to have a finer degree of control over what is
deleted.

10 7090 ch09 7/16/04 8:42 AM Page 149

150 Chapter 9 PHP and Databases

This can be accomplished by specifying a WHERE clause together with your DELETE
statement. For example,

DELETE FROM my_table

WHERE user_name = ‘Daniel’

This will cause all the rows of my_table, in which the value of the user_name column is
‘Daniel’, to be deleted. Naturally, a FROM clause can contain a wide-ranging number of
different expressions you can use to determine which information is deleted from a table
with a very fine level of detail—but those go beyond the scope of this chapter.Although
a few basic conditions are common to most database systems, a vast number of these
implement their own custom extensions to the WHERE syntax.

Retrieving Information from a Database
The basic tool for retrieving information from a database is the SELECT statement:

Select *

From my_table

This is perhaps the most basic type of data selection that you can perform. It extracts all
the values for all the columns from the table called my_table.The asterisk indicates that
we want the data from all the columns, whereas the FROM clause indicates which table we
want to extract the data from.

Extracting all the columns from a table is, generally speaking, not advisable—even if
you need to use all of them in your scripts.This is because by using the wildcard opera-
tor, you are betting on the fact that the structure of the database will never change—
someone could remove one of the columns from the table and you would never find out
because this query would still work.

A better approach consists of explicitly requesting that a particular set of values be
returned:

Select column_a, column_b

From my_table

As you can see, you can specify a list of columns by separating them with a comma. Just
as with the DELETE statement, you can narrow down the number of rows returned by
using a WHERE clause. For example,

Select column_a, column_b

From my_table

Where column_a > 10 and column_b <> ‘Daniel’

Extracting Data from More Than One Table
One of the most useful aspects of database development is the fact that you can spread
your data across multiple tables and then retrieve the information from any combination
of them at the same time using a process known as joining.

10 7090 ch09 7/16/04 8:42 AM Page 150

151Aggregate Functions

When joining multiple tables together, it is important to establish how they are relat-
ed to each other so that the database system can determine how to organize the data in
the proper way.

The most common type of join is called an inner join. It works by returning the rows
from two tables in which a common key expression is satisfied by both tables. Here’s an
example:

Select *

From table1 inner join table2 on table1.id = table2.id

When executing this query, the database will look at the table1.id = table2.id con-
dition and only return those rows from both tables where it is satisfied.You might think
that by changing the condition to table1.id <> table2.id, you could find all the
rows that appear in one table but not the other. In fact, this causes the DBMS to actually
go through each row of the first table and extract all the rows from the second table
where the id column doesn’t have the same value, and then do so for the second row,
and so forth—and you’ll end up with a resultset that contains every row in both tables
many times over.

You can, on the other hand, select all the rows from one of the two tables and only
those of the other that match a given condition using an outer join. For example,

Select *

From table1 left outer join table2 on table1.id = table2.id

This will cause the database system to retrieve all the rows from table1 and only those
from table2 where the id column has the same value as its counterpart in table1.You
could also use RIGHT OUTER JOIN to take all the rows from table2 and only those from
table1 that have the id column in common.

Because join clauses can be nested, you can create a query that selects data from an
arbitrary number of tables, although some database systems will still impose a limitation
on the number of columns that you can retrieve.

Aggregate Functions
The rows of a resultset can be grouped by an arbitrary set of rows so that aggregate data
can be determined on their values.

The grouping is performed by specifying a GROUP BY clause in your query:

SELECT *

From my_table

Group by column_a

This results in the information extracted from the table to be grouped according to the
value of column_a—all the rows in which the column has the same value will be placed
next to each other in the resultset.

10 7090 ch09 7/16/04 8:42 AM Page 151

152 Chapter 9 PHP and Databases

You can now perform a set of operations on the rows known as aggregates. For exam-
ple, you can create a resultset that contains the sum of all the values for one column
grouped by another:

Select sum(column_b)

From my_table

Group by column_a

The resultset will contain one row for each value of column_a with the sum of
column_b for all the rows in my_table that contain that value.

A number of different aggregate functions can be used in your queries.The most
popular are

n AVG()—Calculates the mean average value of all the values for a specific column
n COUNT()—Calculates the number of rows that belong to each grouping
n MIN() and MAX()—Calculate the minimum and maximum value that appears in all

the rows for a specific column.

It’s important to remember that, in standard SQL, whenever a GROUP BY clause is present
in a query, only fields that are either part of the grouping clause or used in an aggregate
function can be selected as part of the query.This is necessary because multiple values
exist for every other column for any given row in the resultset so that the database server
couldn’t really return any one of them arbitrarily.

This limitation notwithstanding, some DBMSs (notably MySQL) actually allow you
to include columns in your query that are neither part of the grouping clause nor
encapsulated in an aggregate function.This can come in very handy under two very spe-
cific circumstances: when all the values for a particular column are the same for every
value of the grouping clause (in which case the column could be a part of the grouping
clause itself) or when you really know what you’re doing.

In general, however, the certification program deals with standard SQL, where this
syntax is not allowed.Also, remember that the GROUP BY clause is not, in itself, an aggre-
gate function.

Sorting
One of the great strengths of databases is the ability to sort the information they retrieve
from their data stores in any number of ways.This is accomplished by using the ORDER
BY clause:

Select *

From my_table

Order by column_a, column_b DESC

This query retrieves all the values from my_table, and then sorts them by the value of
column_a in ascending order.Any rows in which the value of column_a is the same are

10 7090 ch09 7/16/04 8:42 AM Page 152

153PHP and Databases

further sorted by the value of column_b in descending order (as determined by the DESC
clause).

Sorting is very powerful, but can have a significant impact on your database’s per-
formance if the indices are not set up properly.Whenever you intend to use sorting
clauses, you should carefully analyze your queries and ensure that they are properly opti-
mized.

Transactions
When more than one operation that affects the data contained in a schema is performed
as part of a larger operation, the failure of every one of them can wreak havoc on your
data’s integrity. For example, think of a bank that must update your account informa-
tion—stored in a table that contains your actual financial operations and another one in
which your account balance is stored—after a deposit. If the operation that inserts the
information about the deposit is successful but the update of your balance fails, the table
in which your account data is stored will contain conflicting information that is not easy
to highlight by using the DBMS’s built-in functionality.

This is where transactions come into place:They make it possible to encapsulate an
arbitrary number of SQL operations into a single atomic unit that can be undone at any
time until it is finally committed to the database.

The syntax for creating transactions—as well as support for them—varies with the
type of DBMS used, but generally speaking, it works like so:

BEGIN TRANSACTION

(Your data-altering instructions here)

[COMMIT TRANSACTION | ROLLBACK TRANSACTION]

If the COMMIT_TRANSACTION command is issued at the end of a transaction, the changes
made by all the operations it contains will be applied to the database. If, on the other
hand, ROLLBACK TRANSACTION is executed instead, all the changes are discarded.

Transactions are useful in a number of situations and, despite their name, their useful-
ness is not limited to the financial world—generally speaking, whenever you need to
perform a set of operations that must all be successful in order for the data to maintain
its integrity.

PHP and Databases
When it comes to interfacing a PHP script to a database, there is one golden rule: never
trust user input. Of course, this rule should apply to any aspect of your scripts. But when
dealing with databases, it is paramount you ensure that the data that reaches the database
server is pristine and has been cleared of all possible impurities.

Thus, you must ensure that the data coming from the user is properly escaped so that
it cannot be interpreted by the database server in a way you’re not expecting. For exam-
ple, consider this little script:

10 7090 ch09 7/16/04 8:42 AM Page 153

154 Chapter 9 PHP and Databases

<?php

$connection = database_connect (‘server’, ‘user’, ‘password’);

database_exec ($connection, “Insert my_table Values (‘{$_POST[‘username’]}’”)”);

?>

If the user passes this input as the value of the username POST variable, you’ll be in
trouble:

‘); Delete my_table; select (‘

When inserted in the query, the following will actually be executed:

Insert my_table Values (‘’); Delete my_table; select();

This results in the deletion of every row in my_table—probably not what you had in
mind.

PHP provides an escaping mechanism for most DBMSs—you need a different one
because each database platform defines its own escaping rules. For example, if you’re
using MySQL, you can use the mysql_escape_string() function for the purpose.

There’s Date and Date
Another problem that typically affects PHP’s interoperation with databases is the fact that
dates are stored and manipulated in very different ways by the two environments.

As you saw in Chapter 7,“Managing Dates and Time,” PHP’s date functionality relies
on the UNIX timestamp, which has some severe limitations, particularly in its resolution
below the second and in the range of dates that it can represent.

Most databases use an extended date format capable of representing a wide range of
dates that goes well beyond the timestamp’s capabilities.When accessing a database, you
must keep this problem in mind and provide your own mechanism for handling dates.

Exam Prep Questions
1. Which of the following is not an aggregate function?

A. AVG

B. SUM

C. COUNT

D. GROUP BY

E. MIN

The correct answer is D. Group by is a grouping clause, not an aggregate function.

10 7090 ch09 7/16/04 8:42 AM Page 154

155Exam Prep Questions

2. In the following query, how will the resultset be sorted?

Select * from my_table order by column_a desc, column_b, column_c

A. By column_a in descending order, by column_b in descending order, and,
finally, by column_c.

B. By column_a, column_b, and column_c, all in descending order.

C. By column_a, column_b, and column_c, all in ascending order.

D. By column_a.Any rows in which column_b has the same value will then be
resorted by column_c in descending order.

E. By column_a in descending order.Any rows in which column_a has the
same value will then be ordered by column_b in ascending order.Any rows
in which both column_a and column_b have the same value will be further
sorted by column_c in ascending order.

E is the correct answer.The resultset of the query will, first of all, be sorted by the
value of column_a in descending order, as dictated by the DESC clause. If, after the
first sorting operation, any rows have the same value for column_a, they will be
further sorted by column_b in ascending order. If any rows have the same value for
column_a and column_b, they will be further sorted by column_c in ascending
order.

3. How is a transaction terminated so that the changes made during its course are
discarded?

A. ROLLBACK TRANSACTION

B. COMMIT TRANSACTION

C. By terminating the connection without completing the transaction

D. UNDO TRANSACTION

E. DISCARD CHANGES

A and C are both valid answers.A transaction is not completed when the connec-
tion between your script and the database server is discarded, as if a ROLLBACK
TRANSACTION command has been issued.

10 7090 ch09 7/16/04 8:42 AM Page 155

10 7090 ch09 7/16/04 8:42 AM Page 156

10
Stream and Network

Programming

Terms You’ll Need to Understand
n File wrappers
n Streams
n Sockets
n Blocking calls

Techniques You’ll Need to Master
n Filesystem functions
n Network functions
n Socket functions
n Stream functions
n URL functions
n List of supported protocols/wrappers
n List of supported transports

php.ini Settings to Understand
n allow_url_fopen (Filesystem)
n auto_detect_line_endings (Filesystem)
n default_socket_timeout (Filesystem)
n from (Filesystem)
n user_agent (Filesystem)

11 7090 ch10 7/16/04 8:46 AM Page 157

158 Chapter 10 Stream and Network Programming

What Are File Wrappers?
File wrappers are pieces of code that PHP uses to read from and write to different types
of files.They are part of PHP’s Streams architecture.
File wrappers allow you to use PHP’s built-in filesystem functions on things that aren’t
normal files.

Figure 10.1 shows what happens when you access a file.When your PHP script needs
to work with a file, you use one of the filesystem functions that PHP provides.These file
system functions hand the work off to the file wrappers. PHP chooses the correct file
wrapper based on the name of the file.The file wrapper does the work and passes the
results back through PHP to your script.

Your PHP Script

Filesystem Functions

File Wrappers

Built-In Wrappers User-Defined Wrappers

Network ProtocolsLocal Files

Figure 10.1 Accessing a file in PHP.

PHP comes with a number of built-in file wrappers.Additionally, you can create file
wrappers of your own using the PHP Streams API.

How Do You Choose Which File Wrapper Is Used?
You tell PHP which file wrapper to use by passing URLs to the filesystem functions that
accept filenames. URLs look like this:

scheme://path/to/file

or like this:

\\smbserver\share\path\to\file

11 7090 ch10 7/16/04 8:46 AM Page 158

159What Are File Wrappers?

If you do not supply a scheme, PHP will automatically assume that you are trying to
work with a traditional disk-based file.

<?php

// Chapter 10: Stream And Network Programming

//

// Example 01: Selecting a file wrapper using fopen()

// we will open the this example script file

//

// this uses the file:// wrapper

echo “This file is called:” . __FILE__ . “\n”;

$fp = fopen(__FILE__, “r”);

fclose($fp);

?>

What Built-In Wrappers Does PHP Provide?
PHP comes with a number of file wrappers that you can use.

n file://

This file wrapper allows you to work with traditional local files.
n \\smbserver\share\path\to\file

This file wrapper allows you to access files using Microsoft’s file sharing or a com-
patible UNIX solution such as Samba.

n http:// and https://

This file wrapper allows you to communicate with a website using the HTTP net-
work protocol.This file wrapper only supports retrieving data from a website.

Use the user_agent setting in php.ini to tell the remote web server what type of
browser you want content for. Many sites use the user agent string to send back
content tailored to the capabilities of the web browser.

n ftp:// and ftps://

This file wrapper allows you to communicate with FTP servers.You can use this
wrapper to download files from the FTP server and to upload files to the FTP
server.

When logging in to an FTP server as the anonymous user, it is etiquette to use
your email address as the password. Set the from setting in php.ini to your email
address, and the FTP wrapper will automatically do this for you.

11 7090 ch10 7/16/04 8:46 AM Page 159

160 Chapter 10 Stream and Network Programming

n php://

This file wrapper gives you access to PHP’s standard input, output, and error
streams.The main use of this file wrapper is to read raw HTTP POST data.

n compression streams—compress.zlib:// and compress.bzip2://

This file wrapper allows you to read files that have been compressed using the gzip
(.gz files) or bzip2 (.bz2 files), respectively.You can also use this wrapper to create
compressed files too.

You can also create your own file wrappers in PHP and register them using the
stream_wrapper_register() function in PHP 4.3.2 and later.

Not All Wrappers Are Created Equal
There are ten low-level operations that wrappers support. It’s not possible to make every
wrapper support every one of these operations.When working with a wrapper, check to
see which of these operations are supported. Look in the “List of Supported
Wrappers/Protocols” appendix in the PHP Manual for this information.

n Restricted by allow_url_fopen

The allow_url_fopen setting in the php.ini file can be used to prevent scripts
from accessing files across the network.

Some file wrappers are affected by this setting, and some file wrappers are not.
Check the file wrapper you want to use to see.

n Allows reading

This operation allows you to read data using the file wrapper.

Most built-in file wrappers support this operation.The main ones that don’t are
php://stdout and php://stderr.

n Allows writing

This operation allows you to write data using the file wrapper.

Some built-in file wrappers support this operation, and some do not.An example
of a file wrapper that does not support this operation is the http:// file wrapper.

n Allows appending

This operation allows you to add data to the end of whatever it is you are
accessing.

An example of a file wrapper that supports this operation is the
compress.zlib:// wrapper.An example of a file wrapper that does not support
this operation is the ftp:// wrapper.

11 7090 ch10 7/16/04 8:46 AM Page 160

161What Are File Wrappers?

n Allows simultaneous reading and writing

This operation allows you to open a single file for both reading and writing at the
same time.

Most built-in file wrappers do not support this operation.

Even if the file wrapper does not allow you to open a file for both reading and
writing, the file wrapper might allow you to open a file just for reading or just for
writing.A good example of this is the FTP file wrapper. Using this file wrapper,
you can FTP files to a remote server (you can write to the file), and you can FTP
files from a remote server (you can read from the file), but it is impossible to FTP
the file to the remote server and to FTP the file from the remote server at the
same time.

n Supports stat()

The stat() function provides information about the file.

Some file wrappers allow you to access things or data that you normally cannot
obtain, or that do not contain data to start with.

n Supports unlink()

The unlink() function allows you to delete the file.

Some file wrappers allow you to access things that you cannot delete.These file
wrappers therefore cannot support the unlink() function.

n Supports rename()

The rename() function allows you to change the name of the file.

Some file wrappers allow you to access things that you cannot rename.These file
wrappers therefore cannot support of the rename() function.

n Supports mkdir()

The mkdir() function allows you to create a directory (also known as a folder on
Windows).

Some file wrappers allow you to access things that do not support directories.
Other file wrappers allow you to access things that do not let you create new
directories.These wrappers therefore cannot support the mkdir() function.

n Supports rmdir()

The rmdir() function allows you to delete a directory or folder.

Some file wrappers allow you to access things that do not support directories.
Other file wrappers allow you to access things that do not let you delete directo-
ries.These wrappers therefore cannot support the rmdir() function.

11 7090 ch10 7/16/04 8:46 AM Page 161

162 Chapter 10 Stream and Network Programming

Using a File Wrapper
When you have selected a file wrapper using fopen(), you can use the file handle that
fopen() returns with the following filesystem functions:

n fclose()

n feof()

n fflush()

n fgetc()

n fgetcsv()

n fgets()

n fgetss()

n flock()

n fpassthru()

n fputs()

n fread()

n fscanf()

n fseek()

n fstat()

n ftell()

n ftruncate()

n fwrite()

n rewind()

n set_file_buffer()

Depending on the file wrapper you are using, some of these functions might return an
error. For example, you cannot use fwrite() with the http file wrapper because the
http file wrapper only supports reading and not writing.

Correctly Detecting Line Endings
The Windows, UNIX (and UNIX-like systems such as Linux), and Apple Macintosh
(Mac OS) operating systems all use a different sequence of characters to denote the end
of a line of text.

The fgets() function retrieves a complete line of text from a stream by looking for
the end-of-line characters in the stream. By default, fgets() looks for a default
sequence of characters and makes no attempt to determine which operating system the
file came from.

The auto_detect_line_endings setting in the php.ini file allows you to change
the behavior of fgets(). Set this setting to on to tell fgets() to determine the correct
end-of-line character sequence by reading the file, instead of using the default sequence.

Closing a File Wrapper
When you have finished with your file, it is good practice to close the file handle by
using fclose().

PHP will close the file handle for you when your script terminates if you haven’t
already done so. However, there is an operating-system–enforced limit to the number of
files that PHP can have open at once.You can ensure that you never hit this limit by
closing your file handles as soon as you are done with them.

11 7090 ch10 7/16/04 8:46 AM Page 162

163Introducing Streams

Other Functions That Work with File Wrappers
In PHP 4.3.0 and later, there are a number of functions that can be used with file wrap-
pers to work with (possibly remote) files:

n copy()

n file_get_contents()

n file()

n readfile()

Support for file wrappers will be added to many more functions in PHP 5.

Introducing Streams
Streams are the way that PHP handles access to and from files and network services.
Whenever you use file wrappers—whenever you are accessing a file—PHP automatically
creates a stream for you in the background. Figure 10.2 shows what a stream looks like.

Your
PHP
Script

PHP
Streams

API

Stream
Transport

Server

Filesystem
Functions

Network
Functions

Stream

Stream Context

File Wrapper

Stream File Wrapper File On Disk

Write Stream

Read Stream

Figure 10.2 The PHP streams architecture.

Streams are made up from a number of smaller components. Each stream has a transport,
perhaps a file wrapper, one or two pipelines, and perhaps a context. PHP also maintains
metadata about the stream.

What Is Stream Metadata?
Stream metadata is data about the stream itself. It tells you

n what components the stream has been made from
n additional data in the file wrapper that you cannot get at using fread() and others
n the amount of data available for your PHP script to read

11 7090 ch10 7/16/04 8:46 AM Page 163

164 Chapter 10 Stream and Network Programming

n whether the stream connection has timed out or not
n whether the stream has blocked or not
n whether all data has been read from the stream or not

To get stream metadata, use the stream_get_meta_data() function.

<?php

// Chapter 10: Stream and Network Programming

//

// Example 02: stream metdata example

// we will create a stream by opening this stream, and then we’ll

// dump the metadata out to see what’s there

echo “Metadata for file: “ . __FILE__ . “\n\n”;

$fp = fopen(__FILE__, “r”);

var_dump(stream_get_meta_data($fp));

fclose($fp);

?>

Here is the output from running the code example:

array(6) {

[“wrapper_type”]=>

string(9) “plainfile”

[“stream_type”]=>

string(5) “STDIO”

[“unread_bytes”]=>

int(0)

[“timed_out”]=>

bool(false)

[“blocked”]=>

bool(true)

[“eof”]=>

bool(false)

}

<?php

// Chapter 10: Stream and Network Programming

//

// Example 03: stream metadata example - http file wrapper

// we will create a stream by opening a connection to the PHP Project’s

// own web server, and then dump the metadata to see what we have

11 7090 ch10 7/16/04 8:46 AM Page 164

165Introducing Streams

echo “Metadata from a connection to: http://www.php.net/\n\n”;

$fp = fopen(“http://www.php.net/”, “r”);

stream_filter_append($fp, “string.rot13”);

var_dump(stream_get_meta_data($fp));

fclose($fp);

?>

Pipelines
Data in a stream flows along one of two pipelines:

n Data sent down a stream from your PHP script to the destination file or network
server flows down the write pipeline.

n Data retrieved from the file or network server flows up the read pipeline.

Some streams will have both pipelines, but some streams will only have a read pipeline
or a write pipeline.

What Is the Stream Transport?
At the far end of the pipeline, the furthest away from your PHP script, is the stream
transport.The stream transport is a piece of code that enables the file wrapper to talk
directly with whatever the stream is connected to.

PHP comes with a number of built-in transports:
n STDIO

The STDIO transport is used to talk to normal files, special resources such as stdin
and stdout, and any other types of file supported by your underlying operating
system.

n socket

The socket transport is used to talk to (possibly remote) servers over the network.

PHP automatically chooses the correct transport to use with your choice of file wrapper.

What Is the Stream Context?
The stream context is a piece of data about the stream and about the data passing along
the stream. It is used to pass additional options to the file wrapper or stream transport.

You create the context using the stream_context_create() function, and then pass
it as a parameter to fopen() or fsockopen().

Different file wrappers and stream transports accept different options.You can pass
options to both the file wrapper and underlying stream transport at the same time.

11 7090 ch10 7/16/04 8:46 AM Page 165

166 Chapter 10 Stream and Network Programming

How Do Streams Affect Me?
Most of the time, you will be using streams via fopen() and the file wrappers. PHP
always manages the stream for you, and you can pay it little mind under these circum-
stances.

If you have to directly interact with the stream, it will probably be to pass options
through to the file wrapper via a stream context, or to retrieve extra information from
the file wrapper via the stream’s metadata.

The other time that you will need to work more closely with the stream is if you are
writing PHP code to talk over the network to remote servers and services using net-
work protocols.

Connecting to Remote Hosts Using Sockets
When you access a normal file, all file operations ultimately are handled by your com-
puter’s operating system.The operating system creates a resource called a file handle. File
handles make it easy for the operating system to understand which file PHP is reading
from or writing to.

When you access a (possibly remote) server over the network, all the operations on
this connection are also handled by your computer’s operating system. Instead of creating
a file handle, the operating system creates a resource called a socket. File handles and
sockets are very similar, and through the PHP Streams architecture, PHP tries to keep
the differences to a minimum.

When Should I Use a Socket Instead of a File Wrapper?
Some file wrappers allow you to access (possibly remote) network servers. For example,
the http file wrapper allows you to retrieve pages from a web server. Unlike sockets, file
wrappers will hide the details of supporting the application-layer network protocol.

So why would you want to use a socket instead?
You must use a socket if you want to connect to a (possibly remote) network server

that there is no file wrapper for.An example would be connecting to the memcached
caching server.There is no file wrapper that supports the memcached network protocol.

You must use a socket if you want to do something that the file wrapper cannot do—
but is possible through the underlying network protocol.An example would be sending
an XML-RPC message to a (possibly remote) web server. XML-RPC involves sending
XML messages to and from the web server, using the HTTP network protocol.The
http file wrapper only supports reading from a web server; it does allow you to write
data to the web server. But the underlying HTTP network protocol does support writ-
ing data to a web server, and you can access this network protocol by using a socket
rather than by using a file wrapper.

11 7090 ch10 7/16/04 8:46 AM Page 166

167Connecting to Remote Hosts Using Sockets

What Network Transports Does PHP Support?
You can find this information in the “List of Supported Socket Transports” appendix in
the PHP Manual.

n tcp

This transport allows you to connect to (possibly remote) network servers using
the connection-orientated Transmission Control Protocol—the TCP part of
TCP/IP.

n udp

This transport allows you to connect to (possibly remote) network servers using
the connection-less User Datagram Protocol—part of the TCP/IP network
protocol.

n ssl

This transport allows you to connect to (possibly remote) network servers using
Secure Sockets Layer encryption. SSL runs over TCP connections.

n tls

This transport allows you to connect to (possibly remote) network servers using
Transport Layer Security encryption.TLS runs over TCP connections.

n unix

This transport allows you to connect to services running on the local computer
using the connection-orientated UNIX Domain protocol.

n udg

This transport allows you to connect to services running on the local computer
using the connection-less UNIX Domain protocol.

How Do I Open a Socket?
You can create a socket using the fsockopen() and pfsockopen() functions.You tell
PHP what type of network transport you want to use by prefixing the transport to the
name or IP address of the server you want to connect to.

<?php

// Chapter 10: Stream and Network Programming

//

// Example 06: Using fsockopen()

// we will open a connection to the PHP Project’s website, and download

// their front page

//

11 7090 ch10 7/16/04 8:46 AM Page 167

168 Chapter 10 Stream and Network Programming

// note that what comes back is a redirect, and not the front-page itself

// this is an example of one of the many things that the http file wrapper

// automatically (and transparently) handles for us

$fp = fsockopen (“tcp://www.php.net”, 80, $sock_errno, $sock_errmsg);

fwrite ($fp, “GET /\n”);

while (!feof($fp))

{

echo fgets($fp) . “\n”;

}

fclose($fp);

?>

Sockets created using fsockopen() are automatically closed by PHP when your script
ends. Sockets created using pfsockopen() are persistent.

Persistent Sockets
Sockets created using pfsockopen() remain open after your script has finished.When
your next script calls pfsockopen() with the same hostname and port, PHP will reuse
the socket that you opened last time—provided that the socket is still open.

PHP only persists sockets inside a single process.
n If you are using a CGI-BIN version of PHP, the next time your script runs, the

old PHP process will have terminated.Your persistent socket will have been closed
automatically by PHP when your script finished running.

n If you are using mod_php, or a FastCGI version of PHP (such as Zend’s
WinEnabler under IIS), there is a pool of reusable PHP engines.When your script
runs, it might run inside the same copy of the engine as last time—or it might
not. If your script runs inside a different copy of the engine, the call to
pfopensock() will open up a new socket connection.

Remote servers (and especially by any firewalls in between) will automatically close per-
sistent sockets if the socket isn’t used for a period of time.

Timeouts When Opening a Socket
If you don’t provide the timeout parameter to fsockopen(), PHP uses the value of
default_socket_timeout from the php.ini settings.

The timeout parameter to fsockopen(), and the default_socket_timeout setting,
only affect attempts to open the socket.This timeout is not used at all for read and write
operations.

11 7090 ch10 7/16/04 8:46 AM Page 168

169Connecting to Remote Hosts Using Sockets

How Do I Use a Socket?
The PHP Streams architecture allows you to treat socket connections as you would
another type of stream.To read from a socket, you can use fread() and others.To write
to a socket, you can use fwrite() and others.

fread() and fwrite() are binary safe—you can use them to read and write any type
of data that you need to.

Blocking Mode
By default, when PHP creates a new socket, it switches on blocking mode for that
stream.

When blocking mode is on, any functions that attempt to read data from the stream
will wait until there is some data available to be read—or until the socket is closed by
the remote server.

<?php

// Chapter 10: Stream and Network Programming

//

// Example 08: A blocked socket

// we will open a connection to the PHP Project’s website, and attempt

// to read from the socket without having told the webserver what we

// want it to send us.

//

// this will block, and you should use CTRL+C to abort this script when

// you get bored enough

$fp = fsockopen(“tcp://www.php.net”, 80, $sock_errno, $sock_errmsg);

echo “Attempting to read from the stream ... this will not timeout\n”;

echo “until the socket closes. You should use CTRL+C to abort this\n”;

echo “script when you’re ready\n”;

echo fgets($fp) . “\n”;

fclose($fp);

?>

You can switch blocking mode off by using stream_set_blocking():
<?php

// Chapter 10: Stream and Network Programming

//

// Example 09: Switching off blocking mode

11 7090 ch10 7/16/04 8:46 AM Page 169

170 Chapter 10 Stream and Network Programming

// once again, we will make a connection to the PHP Project’s webserver,

// and attempt to read from the socket without having told the webserver

// what page we want it to serve

//

// the difference this time is that we will switch off blocking mode first

//

// finally, we will dump the return value from fgets(), so you can see

// what fgets() returns when trying to read from a blocked stream

$fp = fsockopen(“tcp://www.php.net”, 80, $sock_errno, $sock_errmsg);

stream_set_blocking($fp, false);

echo “Attempting to read from the stream ... this will fail and return\n”;

echo “immediately\n\n”;

$result = fgets($fp);

fclose($fp);

echo “fgets() has returned:\n”;

var_dump($result);

?>

Read/Write Timeouts
Instead of switching off blocking mode, you could use stream_set_timeout() to set a
timeout on read/write operations instead.

<?php

// Chapter 10: Stream and Network Programming

//

// Example 10: setting a timeout on a stream

// once again, we will make a connection to the PHP Project’s webserver,

// and attempt to read from the socket without having told the webserver

// what page we want it to serve

//

// the difference this time is that we will set a read/write timeout of

// ten seconds on the stream

//

// finally, we will dump the return value from fgets(), so you can see

// what fgets() returns when stream operations timeout

11 7090 ch10 7/16/04 8:46 AM Page 170

171Connecting to Remote Hosts Using Sockets

$fp = fsockopen(“tcp://www.php.net”, 80, $sock_errno, $sock_errmsg);

stream_set_timeout($fp, 10);

echo “Attempting to read from the stream ... this will timeout in 10 secs\n\n”;

$result = fgets($fp);

fclose($fp);

echo “The fgets() has timed out, and returned:\n”;

var_dump($result);

?>

Closing a Socket
When you have finished with a socket, you should close it as soon as possible.

The computer that your PHP script is running on can only open a limited number
of sockets.The same is true for the network server at the other end of your socket.The
sooner you can close your socket, the sooner the computer’s operating system can recy-
cle the network connection for someone else to use.

Use fclose() to close your socket:

<?php

// Chapter 10: Stream and Network Programming

//

// Example 11: Using fclose()

// here, we create a stream using fsockopen(), and then demonstrate how

// to close it using fclose()

//

// once the stream has been closed, the file handle cannot be re-used

// without a new call to fopen() or fsockopen()

$fp = fsockopen (“tcp://www.php.net”, 80, $sock_errno, $sock_errmsg);

fclose($fp);

echo “We have opened and closed the stream. When we attempt to read from\n”;

echo “the stream, PHP will output an error on your screen.\n”;

echo fgets($fp);

?>

11 7090 ch10 7/16/04 8:46 AM Page 171

172 Chapter 10 Stream and Network Programming

Further Reading
The seminal work on TCP/IP and socket programming is the series of books written by
the late W. Richard Stevens.

n UNIX Network Programming Volume 1: Networking APIs—Sockets and XTI,W.
Richard Stevens, Prentice Hall, ISBN 013490012X

n UNIX Network Programming:The Sockets Networking API,W. Richard Stevens, Bill
Fenner,Andrew M. Rudoff, Prentice Hall, ISBN 0131411551

n UNIX Network Programming: Interprocess Communications,W. Richard Stevens,
Prentice Hall, ISBN 0130810819

Individual network protocols are normally documented in the Request For Comments
(RFC) series published by the Internet Engineering Task Force (IETF). For more details,
see http://www.rfc-editor.org/.

Exam Prep Questions
1. The company you work for writes and sells a successful content management sys-

tem (CMS). The CMS is written in PHP.

Recently, your company has acquired the assets of one of your main competitors,
including their CMS. The plan is to discontinue the rival CMS, and migrate all of
its current customer base over to your CMS. However, this isn’t going to happen
until you’ve added some of the features that your CMS is currently lacking.

The first feature that you have to add is a dead link checker. This handy little util-
ity runs from the command-line, and checks a list of URLs to see whether they
still work or not. Thanks to the new streams support in PHP 4.3, this should be
very easy to do.

Unfortunately, the first time you test your code, this error appears on the screen:

Warning: fopen(): URL file-access is disabled in the server configuration in
<file> on line 3

Warning: fopen(URL): failed to open stream: no suitable wrapper could be
found in <file> on line 3

What is the cause of this error? Choose from one of the following.

A. File wrappers don’t allow you to access websites. You need to use the
CURL extension for that.

B. The web server is running behind a firewall, which is preventing access out
to the Internet.

11 7090 ch10 7/16/04 8:46 AM Page 172

173Exam Prep Questions

C. The web server’s configuration file contains the setting
‘allow_fopen_url=Off ’, which prevents the PHP file wrappers from
working.

D. The php.ini configuration file contains the setting ‘allow_fopen_url=Off ’,
which prevents the PHP file wrappers from working.

The correct answer is D.

2. Now that you’ve fixed that little problem and are able to connect to remote web-
sites from your PHP script, you’re faced with another problem.

Your script’s job is to determine whether or not a given URL is valid. How is
your script going to do that?

Choose from one or more of the following options.

A. If the fopen() call fails, your script can assume that the remote website no
longer exists.

B. Once you have opened the file wrapper, try reading from the file. If the
read fails, then the remote web page no longer exists.

C. Check the metadata returned by opening the file, and use the HTTP status
code returned by the server to determine whether or not the remote
webpage still exists or not.

D. You can’t use PHP to reliably check whether remote URLs exist or not.
That’s why all these tools are always written in Java.

The correct answers are A and C.

3. Decoding the status code contained in the file wrapper’s metadata is an important
task.

Where should you look to understand what the status code means?

Choose from one or more of the following:

A. The PHP Manual. It’s well annotated, so even if the PHP developers forgot
to list the status codes, you can be sure that a helpful PHP user has added
them somewhere.

B. Microsoft.com. Internet Information Server is the web server of choice for
many companies. Open standards are a nice ideal, but in the real world if
code doesn’t work for customers, you don’t get paid.

11 7090 ch10 7/16/04 8:46 AM Page 173

174 Chapter 10 Stream and Network Programming

C. W3C.org. They set the standards, and standards are important. By support-
ing the open standards, you can be sure that your code will work with most
of the products out in the marketplace.

D Apache.org. The Apache web server is more popular than all the other web
servers put together. If your code works with Apache, then it supports the
market leader. And that’s an important position to be in.

The correct answers are B and C.

4. Your boss was so impressed with your new dead link checker tool that he’s given
you responsibility for adding a larger feature to the CMS product proper.

He wants you to add file replication support.

For large websites, it can be very expensive to purchase a server powerful enough
to cope with all the traffic and associated load. It’s often much cheaper to pur-
chase three or four smaller web servers, with a more powerful server acting as the
admin server. New content is added to the admin server, and then pushed out to
the smaller web servers.

Although most of the content lives in a shared database, original media files (PDF
files, images,Word documents, and the like) are served directly off disk. This is
partly a performance decision, and partly because some database servers have
severe limits on their support for replicating large amounts of binary data.

You must write some code to copy files from the admin server to one or more
web servers. There are no firewalls between the servers.

How would you do this? Choose one or more of the following options.

A. Put the media files into the database, and configure the web servers to
retrieve the files from the database when they are needed.

B. Use file wrappers to write the media files out to a \\server\share network
share.

C. Don’t use file wrappers at all. Use NFS to mount the disks from the admin
server on all the web servers, and access the files directly.

D. Use NFS to mount the disks from the web servers directly onto the admin
server. Have the admin server write to each of the NFS mounts in turn.

The correct answers are B and D.

11 7090 ch10 7/16/04 8:46 AM Page 174

175Exam Prep Questions

5. Customers are fickle things.

Just as you have your new file replication code working, one of your major cus-
tomers informs you that they have installed a firewall between the admin server
and the web servers.

This totally prevents your file replication code from working.

Helpfully, the customer does allow outgoing HTTP connections through the fire-
wall. You’ll need to provide an alternative script, that uploads the files to the web
servers through a HTTP connection. How are you going to do that?

Choose from one or more of the following.

A. File wrappers can’t upload files via http. You’ll have to use the CURL
extension to achieve this.

B. Just open a URL as a file and write to it. The whole point of file wrappers
is to make operations like this easy.

C. Use the stream context to tell the http file wrapper where to upload the file,
and have a script on the web servers move the file from the uploads directo-
ry to their final destination.

D. Use the FTP file wrapper to upload files directly to their final destination.

The correct answer is C.

6. With file replication done and dusted, your boss is confident that he’ll soon have
customers migrating across from the discontinued CMS to your product. He’ll
have no trouble making his targets for the quarter, and earning his bonus.

However, he needs one more feature porting across before he can be certain that
customers will start migrating.

Many sites like to keep in touch with their customers via a weekly newsletter.
Many customers only come back to the website because there was something of
interest to them in the newsletter. Being able to send newsletters—and being able
to make those newsletters look professional—is an important feature.

Your CMS doesn’t support the concept of newsletters per se. But it does support
the idea of packaging groups of files for downloading. If you could write a user-
defined file wrapper that makes a MIME email look just like a ZIP file, it would
then be very easy to add newsletter support.

Sketch out a design for a file wrapper, which would allow a PHP script to add
content, graphics, and other attachments to a MIME email.

11 7090 ch10 7/16/04 8:46 AM Page 175

11 7090 ch10 7/16/04 8:46 AM Page 176

11
Security

Terms You’ll Need to Understand
n Data filtering
n register_globals

n SQL injection
n Command injection
n Cross-site scripting (XSS)
n Shared hosting
n safe_mode

n open_basedir

Techniques You’ll Need to Master
n Validating client data
n Understanding the register_globals directive
n Escaping data used in SQL statements
n Escaping data used in shell commands
n Preventing cross-site scripting attacks
n Understanding the safe_mode directive
n Understanding the open_basedir directive

12 7090 ch11 7/16/04 8:45 AM Page 177

178 Chapter 11 Security

Data Filtering
Data filtering, the process of validating data and filtering out that which is invalid, is
arguably the cornerstone of Web application security.The basic premise is quite simple:
Never trust foreign data, especially data from the client.

There are two fundamentally different approaches to data filtering: the whitelist
approach and the blacklist approach.With a whitelist approach, you assume data to be
invalid unless it is proven otherwise (by meeting certain requirements of validity).With a
blacklist approach, you assume data to be valid unless proven otherwise. Of course, the
whitelist approach is stricter, and therefore more secure.

More pertinent than the principles of data filtering are the applications of it, many of
which are covered in the following sections.

Register Globals
In PHP 4.2.0, the default value of the register_globals directive changed from
On to Off. PHP professionals are now expected to write code that does not rely on
register_globals.

When enabled, register_globals imports data from several different sources into
the global namespace. Of particular interest to most developers is that the data from
$_POST, $_GET, and $_COOKIE is available in regular global variables. For example, if a
POST request contains a variable named foo, not only is $_POST[‘foo’] created, but
$foo is also created.

Although this behavior is simple and well documented, it carries serious implications
with regard to data filtering.Whereas it is quite easy to determine that $_POST[‘foo’] is
something that needs to be validated prior to use, the origin of $foo is less clear when
register_globals is enabled. In addition, if variables are not properly initialized, it is
possible that you might use a variable sent from the client when you intend to be using
a variable that you create yourself.A common example of this mistake is as follows:

if (authorized())

{

$admin = true;

}

/* Later... */

if ($admin)

{

/* Sensitive activity */

}

Because $admin is not properly initialized, a user can arbitrarily set its value by leverag-
ing the behavior of register_globals. For example, the user can call the page with

12 7090 ch11 7/16/04 8:45 AM Page 178

179SQL Injection

?admin=1 appended to the URL.This will cause $admin to be set to 1 at the beginning
of the script.An important point is that a user has no control beyond the start of the
script because a user can only manipulate the HTTP request. Once PHP begins execu-
tion, the request has been received, and a user can do nothing more to affect the pend-
ing response.This is why initializing your variables (and thereby overwriting any
user-injected values) is such a good practice.

Of course, with proper programming practices, register_globals does not pose a
significant risk. However, having register_globals enabled makes the magnitude of a
mistake much greater, and it also makes it more difficult to identify foreign data.

The following guidelines are recommended, regardless of whether register_globals
is enabled:

n Always initialize variables
n Develop with error_reporting set to E_ALL
n Filter all foreign data

SQL Injection
When querying a database, you will likely need to use foreign data in the construction
of your SQL statement. For example, when storing data, you might be using values that
the user supplies in an HTML form.When retrieving data, you might be using the user’s
username or some other client-supplied unique identifier as your primary key.
Regardless of the reason, using foreign data in the construction of an SQL statement is
something that poses a significant security risk.This cannot be avoided in most cases, but
there are some best practices that can help mitigate the risk.

The first step, of course, is to properly filter the data, as just discussed. Most SQL
injection vulnerabilities are a result of poor, or absent, data filtering. It is unlikely that
valid data is going to pose a serious security risk.

With valid data, the only remaining concern is that you escape the data.This includes
making sure that characters in the data aren’t misinterpreted as being part of the SQL
construct. If single quotes are properly escaped, this risk can be mitigated by always
enclosing the data in single quotes within your SQL statement. For example,

$sql = “insert into foo values (‘$bar’)”;

As long as $bar does not contain any unescaped single quotes, it cannot interfere with
the construction of the SQL statement. Of course, there are other characters worth
escaping, and depending on which database you use, PHP might have functions
specifically designed for this task. For example, MySQL users can rely on
mysql_escape_string() to do the escaping.

With some databases, certain data types (notably integers) cannot be enclosed in sin-
gle quotes, but the data filtering for this type of data can be much stricter so that the
other safeguards are less important.

12 7090 ch11 7/16/04 8:45 AM Page 179

180 Chapter 11 Security

Command Injection
Another dangerous activity is executing shell commands whereby the user has supplied a
part of the command. Mitigating this risk is very similar to mitigating the risk of SQL
injection, although there are some specific PHP functions that you should learn.

With properly filtered data, there are only two potential problems that you might
encounter regarding shell commands:

1. There might be metacharacters that can be used to execute arbitrary commands.

2. If the data being used to construct a command is intended to be a single argu-
ment, there might be characters within the data that cause it to be interpreted as
multiple arguments instead.

These problems are solved with escapeshellcmd() and escapeshellarg(), respectively.
Data passed through escapeshellcmd() will be escaped such that it no longer poses a
risk of arbitrary shell command execution. Data passed through escapeshellarg() can
safely be used as a single argument.

Cross-Site Scripting
One of the most frequent vulnerabilities in modern PHP applications is cross-site script-
ing (XSS).As with most security concerns, proper data filtering can practically eliminate
the risk of cross-site scripting. However, in this case, the real risk is when foreign data is
used in your output and thereby potentially displayed to other users.This is fairly typical
for applications such as Webmail, forums, wikis, and even 404 handlers.

The best defense of cross-site scripting is to use functions such as
htmlspecialchars() or htmlentities() on data prior to displaying it. Of these two
functions, htmlentities() is better for this purpose because it is more inclusive in
terms of what entities it encodes.

This is a blacklist approach, but because there are a finite number of well-
documented characters that have a special meaning within HTML, it is actually a pretty
strong approach in this case. Of course, it is still best to be strict in your data filtering. If
you are expecting a person’s first name, should valid JavaScript make it through your data
filtering? Hopefully you agree that this is not desirable.

Other functions such a strip_tags() (that attempts to remove all valid HTML and
PHP) can also help in preventing cross-site scripting vulnerabilities, but this is an exam-
ple of a somewhat weaker blacklist approach than what htmlentities() provides.

Shared Hosting
A common dilemma among PHP developers is achieving a satisfactory level of security
on a shared host.There has been some effort to resolve some of the shared hosting secu-
rity concerns, but none of these can help a shared host reach the level of security that
you can achieve on a dedicated host.

12 7090 ch11 7/16/04 8:45 AM Page 180

181Exam Prep Questions

Two particular attempts to address this problem are the safe_mode and open_basedir
directives.The safe_mode directive effectively limits the files that a PHP script can open
to those with the same ownership as the PHP script itself.This can help to prevent peo-
ple from casually browsing the entire filesystem using a specially crafted PHP script, but
it unfortunately cannot address situations in which other languages are used to achieve
the same.

The open_basedir directive is similar—except that instead of relying on file permis-
sions, it restricts the files that PHP can open to those within a certain directory.Thus,
PHP cannot be used to open files outside of the directory specified by open_basedir.
One somewhat tricky characteristic of open_basedir is that you can use partial names
to match more than one directory. For example, a value of /tmp/foo will match both
/tmp/foo and /tmp/foobar. If you want to restrict access to only /tmp/foo, you can use
a trailing slash so that open_basedir is set to /tmp/foo/.

Both of these directives require administrative access, of course; otherwise, a developer
could simply override these settings.

Exam Prep Questions
1. Which of the following data filtering methods can be described as a whitelist

approach?

A. Make sure that a username does not contain backticks or angled brackets.

B. Only allow alphanumerics and underscores in a username.

C. Pass all incoming data through strip_tags().

D. Use htmlentities() to escape potentially malicious characters.

Answer B is correct.Answer A is incorrect because this assumes that any username
without backticks or angled brackets is valid.Answer C is incorrect because this
only removes HTML and PHP tags, assuming everything else to be valid.Answer
D is incorrect because htmlentities() only encodes HTML entities and is not
intended to filter data at all.

2. With register_globals enabled, which of the following practices is particularly
important?

A. Initialize all variables.

B. Filter all foreign data.

C. Escape all data used in SQL statements.

D. Escape all data prior to output.

Answer A is correct.Answers B, C, and D are incorrect because these practices are
not dependent on whether register_globals is enabled.

12 7090 ch11 7/16/04 8:45 AM Page 181

182 Chapter 11 Security

3. What are the two most important practices to mitigate the risk of an SQL injec-
tion vulnerability?

A. Disabling register_globals and enabling safe_mode.

B. Enabling safe_mode and filtering any data used in the construction of the
SQL statement.

C. Filtering and escaping any data used in the construction of the SQL state-
ment.

D. Disabling register_globals and escaping any data used in the construction
of the SQL statement.

Answer C is correct.With properly filtered data, escaping any metacharacters that
remain can mitigate the remaining risks.Answers A, B, and D are incorrect because
register_globals does not directly affect the risk of SQL injection, and
safe_mode is unrelated.

4. If $foo is anticipated to be a string, what modification made to the following
query will mitigate the risk of an SQL injection vulnerability?

$sql = “insert into mytable values ($foo)”;

A. Specify the column name in the SQL statement.

B. Remove the parentheses surrounding $foo.

C. Replace the parentheses surrounding $foo with single quotes.

D. Add single quotes around $foo.

Answer D is correct.Answer A is incorrect because specifying the column name
does not affect the behavior of the SQL statement.Answers B and C are incorrect
because the parentheses are required.

5. What is the purpose of the escapeshellcmd() function?

A. To prepare data so that it can be used as a single argument in a shell com-
mand.

B. To remove malicious characters.

C. To escape metacharacters, so that they can’t be used to execute arbitrary
commands.

D. To prevent cross-site scripting attacks.

Answer C is correct.Answer A is incorrect because escapeshellcmd() does not
attempt to solve this problem.Answer B is incorrect because escapeshellcmd()
does not actually remove characters.Answer D is incorrect because escaping data
to protect against cross-site scripting is much different than escaping data to be
used in a shell command.

12 7090 ch11 7/16/04 8:45 AM Page 182

183Exam Prep Questions

6. What is the purpose of the escapeshellarg() function?

A. To prepare data so that it can be used as a single argument in a shell com-
mand.

B. To remove malicious characters.

C. To escape metacharacters, so that they can’t be used to execute arbitrary
commands.

D To remove arguments from a shell command.

Answer A is correct.Answers B and D are incorrect because escapeshellarg()
does not remove characters.Answer C is incorrect because escapeshellarg()
does not attempt to solve this problem.

7. When is cross-site scripting a heightened risk?

A. When storing data submitted by the user.

B. When displaying foreign data.

C. When executing a shell command.

D. When opening a remote URL.

Answer B is correct.When displaying foreign data that is not properly escaped, you
can inadvertently expose your users to significant risk.Answer A is incorrect
because storing data poses no immediate threat, even though this might result in a
cross-site scripting vulnerability later.Answers C and D are incorrect because these
activities are unrelated.

8. Which of the following functions can be used to escape data such that it can be
displayed without altering the appearance of the original data?

A. htmlspecialchars()

B. addslashes()

C. escapeshellargs()

D. urlencode()

Answer A is correct because htmlspecialchars() will convert special characters
to HTML entities that will display correctly in any Web client.Answer B is incor-
rect because addslashes() only escapes single quotes.Answer C is incorrect
because escapeshellargs() is only helpful when dealing with shell command
arguments.Answer D is incorrect because URL encoding is not interpreted by
Web clients except in the context of URLs.

12 7090 ch11 7/16/04 8:45 AM Page 183

184 Chapter 11 Security

9. What is the purpose of the open_basedir directive?

A. To indicate the directory that include() calls will use as a base.

B. To restrict file open access to a specific directory.

C. To set the working directory.

D. To allow additional file open access than that granted by safe_mode.

Answer B is correct.Answer A is incorrect because the behavior of include() is
unchanged.Answer C is incorrect because the working directory does not depend
on open_basedir.Answer D is incorrect because open_basedir is not affected by
whether safe_mode is enabled.

10. Which of the following activities can safe_mode help prevent?

A. Browsing the filesystem with a specially crafted PHP script.

B. Writing a Bash shell script to read session data.

C. Browsing the filesystem with a specially crafted Perl script.

D. Accessing another user’s database.

Answer A is correct because you’ll only be able to browse files that have the same
ownership as your PHP script.Answers B and C are incorrect because safe_mode
cannot affect scripts written in other languages.Answer D is incorrect because
safe_mode does not attempt to prevent database access.

12 7090 ch11 7/16/04 8:45 AM Page 184

12
Debugging and Performance

MAKING MISTAKES IS HUMAN, and so is fixing them. In your day-to-day program-
ming adventures, it’s inevitable to introduce bugs in your PHP code, especially when
you’re writing very complex applications with tens of thousands of lines of code spread
across tens of files.

When you’re prototyping an application, being able to avoid common programming
mistakes is important to ensure that your code will be well-written from the very start.
In this chapter, we’ll provide you with some guidelines on writing efficient code, debug-
ging faulty scripts, and identifying bottlenecks when performance becomes an issue for
both you and your clients.

Terms You’ll Need to Understand
n Bug
n Coding standard
n Code readability
n Comparison operators
n Performance
n Caching
n Portability

Techniques You’ll Need to Master
n Writing readable code
n Proper commenting
n Comparing heterogeneous data
n Debugging

13 7090 ch12 7/16/04 8:44 AM Page 185

186 Chapter 12 Debugging and Performance

n Identifying and preventing performance bottlenecks
n Preventing performance issues
n Improving database performance
n Using content and bytecode caching

Coding Standards
Writing your code in a structured manner is, perhaps, the smartest decision you can
make.Although there aren’t any predefined coding standards that everyone in the pro-
gramming community recognizes as better than the rest, deciding from the very begin-
ning on a set of conventions will go a long way toward helping you make fewer
mistakes.

Documenting your code is particularly important.To make this job—probably at the
top of the Ten Most Hated Tasks of programmers worldwide—a bit easier, you can even
use one of the many automated tools available on the market, such as PHPDocumentor,
which can extract documentation directly from your code if you structure your com-
ments in a particular way.

Regardless of how you introduce them in your applications, good comments and
documentation will make sharing your code with other members of your team easier, as
well as make sure that you’ll remember what it does when you get back from that three-
week vacation. Remember, preventing bugs is much better than hunting for them.

Extra whitespace and empty lines, although unimportant as far as the functionality of
your code is concerned, can be an extremely valuable tool for writing better code:

if ($foo == ‘bar’)

{

$i = 0;

/**

* foreach loop, get the content out of it

*/

foreach (….)

{

}

}

By separating your code into logical groups, your source will be cleaner and easier to
read.Also, indenting each line according to the code block it belongs to helps you figure
out immediately what the structure of your script is.

13 7090 ch12 7/16/04 8:44 AM Page 186

187Coding Standards

Flattening if Statements
Consider the following snippet of code:

if ($is_allocated)

{

if ($has_been_mangled)

{

if ($foo == 5)

{

print “foo is 5”;

}

else

{

print “You entered the wrong data!”;

}

}

else

{

return false;

}

}

else

{

return false;

}

As you can see, the many nested if statements here cause the code to look very busy
and difficult to read.An easy way to improve the situation consists of “flattening” your
if statements so that you can achieve the minimum level of indentation without com-
promising either the functionality of your code or its performance.The preceding script,
for example, could be rewritten as follows:

if (!$is_allocated)

{

return false;

}

if (!$has_been_mangled)

{

return false;

}

if ($foo == 5)

{

print “foo is 5”;

13 7090 ch12 7/16/04 8:44 AM Page 187

188 Chapter 12 Debugging and Performance

}

else

{

print “You entered the wrong data!”;

}

This approach gives you a better structure with fewer levels of nesting so that your code
is easier to understand. Note that the type of operations performed is pretty much the
same as before—and the elimination of two else statements will make the code easier
to parse for the interpreter.

Splitting Single Commands Across Multiple Lines
One of the great things about PHP is that it doesn’t require you to write a single state-
ment all on one line of code. In fact, any statement can be split across an arbitrary num-
ber of lines without any change in its functionality—provided, of course, that the split
doesn’t take place in the middle of a text string.This is particularly useful when you have
a complex line of code that spans a large number of characters:

$db->query(“select foo,

bar,

mybar as foobar

from tbl1

where tbl1.mybar=’foo’”);

This database query is split over several lines.The main advantage here is that you can
immediately see what the query does, which tables are involved, and which conditions
you are placing in the where clause. If the same query had been placed all on the same
line, understanding its purpose would have taken a lot more effort, and the risk of intro-
ducing new bugs by modifying it would have been greater.

Concatenation Versus Substitution
If you are inserting data into a long string—such as a database query—you can use the
concatenation operator, but doing so often limits your ability to read the query properly:

$db->query

(“insert into foo(id,bar)

values(‘“.addslashes($id).

“‘,’”.addslashes($bar).”’)”);

On the other hand, you could just use one of the printf() functions to do the job for
you:

$db->query(sprintf(“insert into foo(id,bar) values(‘%s’,’%s’)”,

addslashes($id),

addslashes($bar)

));

13 7090 ch12 7/16/04 8:44 AM Page 188

189One Equal, Two Equals, Three Equals

As you can see, the entire statement is now a lot easier to read, although you will lose
some performance by switching to sprintf() from the concatenation operator, which is
native to the PHP interpreter and doesn’t require the execution of any external libraries.
The literals in the string passed to sprintf() will be substituted with the values of the
parameters passed afterwards in the order in which they appear in the call. Combined
with the ability to split your commands over several lines, this approach can enhance
readability to a large degree.

Choose Your Opening Tags Carefully
Mixing PHP and HTML code is one of the characteristics of PHP that make it both
easy to use and powerful, although it’s easy to abuse this capability and come up with
code that is difficult to read.

When writing code for an application that could run on heterogeneous systems, it’s
always a good idea to be very careful about which opening tag styles you use. In Chapter
1,“The Basics of PHP,” we mentioned that there are several of them, but only the
canonical tags <?php ?> are fully portable. Short tags (which include the echo tag <?=)
and ASP tags can all be turned off through PHP configuration directives.

Thus, the following

<?php print “Testing 1 2 3” ?>

is longer than

<?= “Testing 1 2 3” ?>

But not quite as portable. Note, also, that there is a subtle difference between print and
echo.Although they are both language constructs, the former acts as a function—mean-
ing that it actually returns a value (always a Boolean True)—whereas the latter does not.
Thus, the following code is valid, although quite pointless:

<?php echo print (10) ?>

One Equal,Two Equals,Three Equals
How often did you write the following code?

if ($a = 5)

{

print “a is 5”;

}

If you’re like most programmers, the answer is an unfortunate “often.”The problem here
is caused by the fact that the if statement allows for any operations to take place inside
its condition—including assignments.Thus, the preceding line is not technically incor-
rect, but it’s obviously not what the author intended to perform, as it will always be eval-
uated to true, making the if statement pointless and, what’s worse, changing the value
of $a.

13 7090 ch12 7/16/04 8:44 AM Page 189

190 Chapter 12 Debugging and Performance

Clearly, the statement should have been written as follows:

if ($a == 5

{

print “a is 5”;

}

In this case, the condition is a comparison operator, and it will be evaluated as true only
if the value of $a is 5.

There is, luckily, a very easy way to avoid this mistake once and for all, without any
possibility of ever slipping again: make sure that the condition is written in such a way
that it cannot possibly be misinterpreted:

if (5 == $a)

{

print “a is 5”;

}

With this approach, if you mistakenly only use one equal sign instead of two, as in 5 =
$a, the interpreter will print out an error because you can’t assign anything to an imme-
diate value. If you make a habit of writing all your conditions this way, you will never
fall in the assignment trap again!

There’s Equal and Equal
As we mentioned in Chapter 1, PHP is a loosely typed language.This means that, under
the right circumstances, it will automatically juggle data types to perform its operations
according to how programmers are most likely to want it to.

There are scenarios, however, in which this is not a desirable approach, and you want,
instead, PHP to be strict and literal in the way it compares data. Consider, for example,
what would happen if you were dealing with information coming from a patient’s med-
ical record. In this situation, you’ll want to make sure that nothing is left to chance and
that PHP doesn’t attempt to interpret user input in too liberal a way.

Generally speaking, it’s always a good idea to use the identity operators (=== and !==)
whenever you know that a value has to be of a certain type:

if ($a !== 0) {

echo ‘$a is not an integer zero’;

}

Testing for Resource Allocation
One of the most common mistakes that causes code to become unreliable consists of
using external resources without ensuring that they are available. For example, look at
the following code:

13 7090 ch12 7/16/04 8:44 AM Page 190

191Ternary Operators and if Statements

$res = mysql_query(“select foo from bar”);

while ($row = mysql_fetch_array($res))

{

print $row[‘foo’].”
”;

}

See what’s wrong? The author doesn’t test for the query’s failure before moving on to
perform other tasks that use the resource returned by mysql_query().The query could
fail for a number of reasons, even though it is syntactically correct—for example, the
server might be unavailable, or there could be a network interruption.What’s worse in
this particular case, the MySQL extension does not cause a fatal error if a query cannot
be executed.Therefore, the script moves on, and a cascade of additional problems could
be caused by this initial blunder.

If, on the other end, error conditions are properly tested for, this issue doesn’t even
present itself:

if (!$res = mysql_query(“select foo from bar”))

{

/**

* no valid result, log/print error, mysql_error() will tell you

*/

}

else

{

while ($row = mysql_fetch_array($res))

{

print $row[‘foo’].”
”;

}

}

It’s undoubtedly hard to write an if statement every time you execute a query—but
also necessary if you are serious about error management.To make things a bit easier on
yourself (and your entire team), you could adopt one of the many abstraction layers
available or write one yourself.This way, the actual error management can be performed
in a centralized location (the abstraction layer), and you won’t have to write too much
code.

It’s important to keep in mind that this process is required whenever you interact
with an external resource, be it a database, a file, or a network connection.

Starting with PHP 5, you can use other error-control structures known as exceptions.
However, remember that these are not available in PHP 4 and, therefore, cannot be used
to solve a problem that appears in the exam.

Ternary Operators and if Statements
if statements are necessary control structures for all but the simplest of PHP scripts.As a
result, sometimes they will tend to be very complex, even if you nest them on various
levels.

13 7090 ch12 7/16/04 8:44 AM Page 191

192 Chapter 12 Debugging and Performance

Luckily, the ternary conditional operator that you saw in Chapter 1 can be used to
simplify the use of if statements by embedding them directly in a larger expression. For
example, consider the following snippet of code:

function is_my_country($country)

{

if (strlen($country) == 3)

{

return 1;

}

else

{

return 0;

}

}

It could also be written as

function is_my_country($country) {

return (strlen($country)==3) ? 1 : 0;

}

As you can see, the function is much shorter than the if statement in the preceding
example.This can be very valuable if you’re dealing with a complex piece of code such
as the following:

$db->query(sprintf(“insert into foo(f1,f2,f3) values(‘%s’,’%s’,’%s’)”,

(isset($_SESSION[‘foobar’])) ? ‘yes’ : ‘no’,

(isset($_POST[‘myfoo’]) && $_POST[‘myfoo’]!=’’) ? $_POST[‘myfoo’] : ‘no’,

‘foo’));

A call such as the preceding one would have been a lot more complex if it had been
written using traditional if statements—not to mention that you would have needed
either a number of new variables to hold the information, or a different set of function
calls for each possible scenario.

Logging and Debugging
Displaying error messages to the browser is a problem from many points of view. First,
you’re letting your visitors know that something in your code is broken, thus shaking
their confidence in the solidity of your website. Second, you’re exposing yourself to
potential security vulnerabilities because some of the information outputted might be
used to hack into your system.Third, you’re preventing yourself from finding out what
error occurred so that you can fix it.

A good solution to this problem consists of changing your php.ini setting so that the
errors are not displayed to the screen, but stored in a log file.This is done by turning
display_errors to off and log_errors to on, as well as setting a log file where the

13 7090 ch12 7/16/04 8:44 AM Page 192

193Optimizing Performance

error messages are stored through the error_log option.You can open a shell and use
tail –f to follow the PHP log.

If you want to go a step further, you could use the set_error_handler() function
to define your own error handlers and log additional information that you might find
useful when trying to troubleshoot the problem.

Naturally, you can also use the error-suppression operator @ to prevent PHP from dis-
playing or logging the error.Although this is an easy way to solve the problem, it could
lead to problems when using in production scenarios in which you do need to find out
when an error occurs so that you can fix it.

Using Debuggers
Ultimately, not all bugs can be solved just by staring really hard at the code (although it
often helps to). In some cases, you just need to “see” the program running to discover
what’s causing it not to perform properly.What you need is a debugger.

A lot of debuggers exist, starting with the ancient DBG (now integrated into
NuSphere’s PHPEd) and progressing to APD, XDebug and the debugger that’s integrated
into the Zend Studio IDE. Most debuggers have the capability to set breakpoints on
specific lines in your code and watch points where you can watch the global scope of
your PHP variables.

Using a debugger, you can step through each line of your application and see exactly
how it flows.As such, you should definitely be familiar with one because some day
you’re definitely going to need one.

Optimizing Performance
Performance is a “happy problem” until the day it falls in your lap. Nothing can ruin
your day like a pointy-haired manager screaming in your ears because the website is not
responding well to an increase in traffic.

Although it won’t have an immediate impact on your ability to go live, measuring the
performance of a website is an important step that will come in handy on the day in
which you will need to troubleshoot it.

Hardware Issues
Naturally, the easiest way to help a system that is ailing because of too much traffic is to
throw more hardware at it.You could increase your onboard RAM or the speed of your
hard disks, or you could even add another server altogether.

Another good idea is to ensure that your data is all stored in the right place. By saving
the logs on a separate disk or partition than where your main application files are stored,
you can help the operating system optimize its caching mechanisms and provide higher
performance.

Although a well-configured computer is a great starting point as far as ensuring that
your application is performing to the best of its capabilities, eventually you are going to

13 7090 ch12 7/16/04 8:44 AM Page 193

194 Chapter 12 Debugging and Performance

find that an alternative solution is required since you obviously can’t simply add new
servers to your farm indefinitely.

Web Server Issues
Proper web server configuration goes a long way toward improving performance.A
good starting point is to turn off reverse DNS resolution since you don’t need it at the
time when your web server is simply logging information about site access.You can
always perform that operation offline when you analyze your logs.

It’s also a good idea to familiarize yourself with how the web server you’re using
works. For example,Apache 1.3.x is a forking web server—meaning that it creates copies
of its own process as children. Each child process waits for a connection (for example
from a web browser) and, if there are more connections than available idle children, the
server creates new ones as needed.

In its default configuration,Apache pre-forks 5 children and has a maximum of 150.
If you consider that each child requires between 2 and 5 megabytes of memory to run
(assuming your scripts don’t require even more), this could easily lead to a performance
bottleneck if the traffic on your server goes up.At maximum load, 150 child processes
could require between 300MB and 750MB of RAM.And, if you run out of physical
memory, the operating system will switch to its virtual memory, which is significantly
slower.

This problem can also become self-compounding.As more and more child processes
are created and the system is forced to rely increasingly on virtual memory, the average
response time will increase.This, in turn, will cause even more child processes to be cre-
ated to handle new connections, eventually exhausting all your system resources and
causing connection failures.

As a result, a careful read of your web server’s documentation is probably one of the
cheapest (and smartest) investments that you can make. Do take the time to tune the
appropriate configuration options for minimum and maximum clients and only compile
or activate those web server modules you really need in order to save memory consump-
tion.

Avoid Overkill
If you’re dealing with a mixture of static and dynamic content, it’s a good idea to keep
things simple and let a lightweight web server handle the static data. Because you don’t
need any of the advanced features provided by PHP and Apache, using a different server
that requires fewer system resources to run will increase your performance.You can even
move the static data to a different server altogether and neatly divide the work across
multiple machines.

13 7090 ch12 7/16/04 8:44 AM Page 194

195Database Optimizations

Zip It Up
HTML is a very verbose language.As a result, web pages are often rather large—
although maybe not as large as, say, a video or audio stream. Still, even a 20KB page will
take its sweet time across a slow dial-up connection.

PHP makes it possible to compress the output of a script so that it can travel faster to
the user.This can be done in a number of ways—for example, you can enable the GZIP
buffer handler in your php.ini file or turn it on directly from within your scripts:

ob_start(“ob_gzhandler”);

Naturally, the output of your scripts will only be compressed if the browser that is
requesting the document supports the GZIP compression standard.

Database Optimizations
Although we’ve briefly discussed databases in Chapter 9,“PHP and Databases,” it’s a
good idea to start thinking about them in terms of performance.When you execute a
database query, you depend on an external resource to perform an operation and, if that
operation is slow, your entire website will suffer.

There is no predetermined “maximum number of queries” that you should use when
writing database-driven websites. Generally speaking, the higher the number, the slower
a page will be, but a single badly written query can slow down a web page more than 20
well-written ones.As a general guideline, most developers try to keep the number of
queries performed in every page below five—however, many websites use a higher num-
ber without suffering any significant performance degradation.

Optimizing the tables that your queries use is the first step toward ensuring fast data
access.This means that you will have to normalize your database so that a particular field
is stored only in one table and each table is properly linked with the others through for-
eign keys. In addition, you will have to ensure that all your tables have been properly
indexed to ensure that the queries you execute can take full advantage of the DBMS’s
capability to organize data in an efficient way.

Naturally, your optimizations should not come at the expense of security.Always
make sure that you escape all user input properly (as discussed in Chapter 9) and that the
statements you perform are safe even if the database itself changes.

For example, consider this simple query:

INSERT into my_table

values (10, ‘Test’)

This query expects that my_table will always have two fields. If you extend it to include
additional columns, the query will fail.This might seem like a far-fetched scenario, but it
really isn’t.A complex application often includes hundreds, or even thousands, of queries,
and it’s easy to forget that one exists when making such sweeping changes.

13 7090 ch12 7/16/04 8:44 AM Page 195

196 Chapter 12 Debugging and Performance

On the other hand, it’s easy enough to fix this problem by simply rewriting the query
so that it specifies which fields it intends to insert data in:

INSERT into my_table (id, name)

values (10, ‘Test’)

In this case, it will be a lot more difficult for an error to crop up—but by no means
impossible. If the new fields you have added to my_table do not accept null values and
have no default values defined, the query will still fail because the database won’t accept
empty columns.Thus, you really have to be careful when making changes to your data-
base!

Keep Your Code Simple
If you’re coming from a Java background, you might be used to writing a large infra-
structure of classes that rely on each other to perform a particular task.

Don’t try this with PHP! PHP’s OOP features work best when your framework is
small and efficient. Creating objects in PHP is a rather slow process, and, as such, it
should be used conscientiously.

Caching Techniques
Sometimes, it’s just not possible to optimize your code beyond a certain point. It might
be that your queries are too complicated or that you depend on a slow external
resource, such as a web service, over which you have no control.

In these cases, you might want to think about using a caching solution that “saves” the
output of an operation and then allows you to access it without performing that opera-
tion again.

There are several types of cache; for example, you can save the results of a database
query, or even an entire web page.The latter means that you generate your pages nor-
mally at predetermined intervals and save them in the cache.When a page is requested
by a user, it is actually retrieved from the cache instead of being generated from scratch.

You can find several packages in the PEAR repository that are useful for output
caching of various type. Naturally, there are also commercial solutions that perform a
similar task, such as the ones provided by Zend.

Bytecode Caches
When PHP runs your scripts, it does so in two steps. First, it parses the script itself, trans-
forming it into a sort of intermediate language referred to as bytecode.Then, it actually
interprets the bytecode (which is simpler than PHP itself) and executes it. If your scripts
don’t change between one execution and the next, the first step could easily be skipped,
and only the second step would have to be taken.

13 7090 ch12 7/16/04 8:44 AM Page 196

197Exam Prep Questions

This is what “bytecode caches” do.They are usually installed as simple extensions to
PHP that act in a completely transparent way, caching the bytecode versions of your
script and skipping the parsing step unless it is necessary—either because the script has
never been parsed before (and, therefore, can’t be in the cache yet) or because the origi-
nal script has changed and the cache needs refreshing.

A number of commercial and open-source bytecode caches (also called accelerators) are
available on the market, such as the one contained in the Zend Performance Suite, or
the open-source APC. Most often, they also modify the bytecode so as to optimize it by
removing unnecessary instructions.

Bytecode caching should always be the last step in your optimization process because
no matter how efficient your code is, it’s always going to provide you with the same per-
formance boost.And, as a result, it could trick you into a false sense of security that
would prevent you from looking at the other performance optimization techniques
available.

Exam Prep Questions
1. How can the following line of code be improved?

$db->query(“insert into foo values($id,$bar)”);

A. Use addslashes and sprintf to avoid security holes and make the code
cleaner

B. Split the query over several lines

C. Use mysql_query() instead of $db->query()

D. Define the table fields that will be affected by the INSERT statement

E. Use mysql_query() instead of $db->query() and addslashes to avoid
security holes

Answers A, B, and D are correct. First of all, you need to ensure that the query is
secure; this is done by executing addslashes (or the equivalent function for your
DBMS of choice) to prevent scripting attacks. If your query is long, it’s not a bad
idea to split it over several lines to get a better overview of your code. Use
sprintf() where possible to make the code cleaner. Finally it’s always a good idea
to define the table fields that will be filled by an INSERT statement to prevent
unexpected errors if the table changes.

13 7090 ch12 7/16/04 8:44 AM Page 197

198 Chapter 12 Debugging and Performance

2. You developed a big application accessed by several thousand users at the same
time. Suddenly, your web server stops responding and users are getting connection
errors.What could have happened?

A. The database server was terminated because of the unusually high amount of
database accesses.

B. The web server was misconfigured so that it ran into virtual memory usage
and consequent resource starvation because of too many child processes.

C. You didn’t optimize your code design properly.

Answer B is correct.Although it could be possible that the database server was
killed because of the many requests from the users, they should at least be able to
see the HTML pages from the website because the web server would still be run-
ning. If connections are timing out, it is likely that the server ran into swap space
because of misconfiguration of the number of concurrent web server child
processes and crashed because of resource starvation.

3. You are in a team of developers working on a number of different business appli-
cations.Your project manager tells you that in two weeks another three PHP
developers will join the team and that you have to ensure that they will be ready
to dive in to the current PHP code without problems.What could you do?

A. Write proper end user documentation on how to use the web front end.

B. Write proper end user documentation and generate proper PHPDoc com-
ments inside the code to get an API documentation.

C. The absence of documentation will actually encourage the new developers
to delve more deeply into the code.

Answer B is correct—or, at least, as correct as you can get in a general situation.
The key here is that you should write proper documentation at the same time as
you’re writing your code.You could then use a tool such as PHPDocumentor to
generate a nicely formatted API documentation in HTML or PDF and make it
available to any new developers who join your team.

4. Suppose that you are receiving input from the user in the form of the string
“0mydeviceid” for a field for which you only allow valid numeric values.You
want to test if this variable is equal to 0 and, if it isn’t, output an error.Which
comparison operation should you use?

A. (0 = “0mydeviceid”)

B. (0 == “0mydeviceid”)

C. (0 === “0mydeviceid”)

D. None of the above

13 7090 ch12 7/16/04 8:44 AM Page 198

199Exam Prep Questions

Answer D is correct. Because PHP is automatically trying to convert the string
“0mydeviceid” to 0 when comparing it with the equal operator == , your condi-
tion in answer B evaluates to true even though the user input is not a valid numer-
ic value.The expression in answer C, on the other hand, correctly determines that
the user input is not a valid integer—but that will always be the case because
you’re likely to always receive user input in the form of a string—so, even if that
string can be converted to an integer value, the identity test will fail.

13 7090 ch12 7/16/04 8:44 AM Page 199

13 7090 ch12 7/16/04 8:44 AM Page 200

13
Getting Ready for the

Certification Exam

IN THE PREVIOUS CHAPTERS,YOU LEARNED about the PHP language and the specific
topics that are covered in the Zend PHP Certification. In this chapter, you will learn
other aspects of the exam such as how the exam is constructed and the various stages
involved in the certification process—thus limiting any surprises you might encounter
when taking the exam and assisting you in using your time efficiently, maximizing your
efforts toward attaining your educational goal.

What the Exam Tests
The Zend PHP Certification formally confirms the recognition of specific abilities and
skills acquired and developed by the examinee. In other words, how predictably is the
person likely to perform when applying PHP technology to a business problem? Have
the examinees reached a predefined minimum standard in both academic and practical
experience needed to produce quality work?

How to Register
The Zend PHP Certification tests are delivered using a state-of–the-art electronic testing
service provided by Pearson VUE.With over 3,500 test centers worldwide, finding a test
center near you is simple and fast. Using the Test Center Locator available on the top
menu of Pearson VUE’s website (http://www.vue.com/) choose IT Certification as the
Testing Category and select Zend from the Testing Program menu.You will be presented
with a list of countries where you begin to narrow down your search, finally finding a
test center nearest your location.

There are three different methods you can use to register for the certification exam.
Regardless of the method you choose, a Zend.com username is mandatory for registra-
tion and is used for syncing your exam results with your Zend database profile.A
Zend.com username can be obtained online at http://zend.com/add_user.php simply by

14 7090 ch13 7/16/04 8:43 AM Page 201

202 Chapter 13 Getting Ready for the Certification Exam

filling in a few details. Using an incorrect username when registering at Pearson VUE
might result in delays processing exam results and certification delivery.

Registration via Pearson VUE Call Center
If you would like to talk to a Pearson VUE representative in order to register and sched-
ule your test, call centers are available in the United States and Canada from 7:00 a.m. to
7:00 p.m. (Central Time), Monday through Friday. Non-U.S. call centers are available in
the Asia-Pacific, Europe, Middle East, and Africa regions.These call centers operate from
9:00 a.m. to 6:00 p.m., local time, Monday through Friday. For a complete list of call
centers and phone numbers, visit http://www.vue.com/contact/zend/.

A Pearson VUE representative will inform you of Test Center locations and availabili-
ty and schedule a time for the certification test at your convenience.

Registration via the Person VUE Website
Probably by far the most popular and convenient way to register and schedule a certifi-
cation test is by using the Pearson VUE website, which can be located at
http://www.vue.com/.You must first create an account prior to scheduling your test
location and time. By clicking on the Create Account button positioned on the top left
side of the home page, you will be asked to choose a Testing Category and Testing
Program, where IT Certification and Zend should be selected, respectively. On the next
few pages, you will be required to enter personal information, including your name and
contact information.When asked for your Zend.com username, make sure that what you
provide is accurate because this information is used at Zend when processing your exam
data.Any imprecision will lead to manual processing of your information and therefore
delay the arrival of your certificate.

After a Pearson VUE web account is created, scheduling your certification test time
and location is conveniently accomplished by using the online interface that directs you
through the various stages.

Registration at the Test Center
Some Test Centers allow a walk-in registration process.The Test Center will gather all
necessary information and enter the candidate into the system to schedule an exam. Not
all Test Centers provide this service, and you should call first to verify.Test Center tele-
phone numbers and locations can be found on the Pearson VUE website at
http://www.vue.com.

What to Expect at the Test Center
You should arrive at the Test Center on your scheduled day 15 minutes before your test
begins.This will provide you and the Test Center sufficient time in which to sign you in
and prepare any material necessary for the event. Upon your arrival, the Test Center
coordinator who welcomes you will request two forms of identification.At least one
piece of identification should include a recent photo.

14 7090 ch13 7/16/04 8:43 AM Page 202

203How the Exam Works

You will be requested to surrender personal belongings that include, but are not lim-
ited to books, cell phones, and bags.They will be stored in a secure place for the dura-
tion of the test.

The Zend PHP Certification is a closed-book exam. No software is permitted for use
in the exam, and there will not be any Internet access.You will however be provided
with some paper and a pen for taking notes and performing calculations that might help
during the time of the test.At the end of the test, the paper and pen are returned to the
Test Center coordinator. In some Test Centers, an erasable plastic board and a marker are
provided instead of the paper and pen.

How the Exam Works
The Zend PHP Certification is a 90-minute exam with a total of 70 questions. Before
starting the exam, you will be provided with Exam Instructions, a Nondisclosure
Agreement, and a short five-question survey. Familiarizing yourself with these pre-exam
procedures and items can save you precious time, which is better used answering test
questions.

Exam Instructions
The instructions provided to the examinee prior to the exam (valid during the time of
this publication) are

n The questions are relevant to PHP versions 4 and above (up to version 4.3.6.).
n Unless stated otherwise, the recommended php.ini file must be assumed.
n When asked to supply a function name, do not include the parenthesis.
n Your answers should reflect PHP’s case-sensitivity rules.

NDA (NONDISCLOSURE AGREEMENT)
The following nondisclosure agreement is supplied before the exam questions. It is
encouraged that you read the NDA ahead of time rather than during the test.This will
not only save time, but will also give you one less item to worry about before you begin
your one-and-a-half-hour long test.

NONDISCLOSURE AGREEMENT AND GENERAL TERMS OF USE FOR
ZEND PHP CERTIFICATION EXAMS,AND LOGO USAGE AGREEMENT

This exam is Zend Technologies Ltd.’s (“Zend”) proprietary and confidential infor-
mation and is protected by trade secret laws and other applicable laws. It is made
available to you, the examinee, solely for the purpose of becoming certified in the
technical area referenced in the title of this exam.You are expressly prohibited from
copying, disclosing, publishing, reproducing, or transmitting this exam, in whole or in
part (including any question or answer thereto), in any form or by any means, verbal
or written, electronic or mechanical, for any purpose, without the prior express writ-
ten permission of Zend.

14 7090 ch13 7/16/04 8:43 AM Page 203

204 Chapter 13 Getting Ready for the Certification Exam

Zend may, at its sole discretion, designate a logo for limited use by those individuals
who have passed this exam (the “Logo”).The Logo is personal and may only be used
by you and no other person or entity.You may use the Logo only on your personal
business cards, letterhead, personal website, and your resume and not in any other
form.You are prohibited from displaying or using the Logo in any way that may
imply that you are an employee or otherwise related to, or endorsed by, Zend.The
Logo only relates to that level of certification that you have achieved.You may not
modify or otherwise alter or change the Logo. In the event your certification expires
or is otherwise terminated, you will immediately cease use of the Logo.

Viewing Backward and Forward
During the exam, the examinee may page back and forward at any time. Even after the
completion of the entire exam, you may go back to review, change, and edit answers.
Once the End Exam button has been pressed, the exam is processed and no changes can
be made.

Reviewing Your Answers
If you are unsure about a certain question during the test or would like to remind your-
self to come back to a question at the end of the test, you may use the Review feature.
This is a recommended and time-saving feature. It appears as a review check box on the
upper left-hand corner of the exam delivery application. Checking this box will mark
the question for review, and at the end of the exam, a summary of all the questions
marked by you will be displayed with the option to go back and iterate through only
those questions.

Your Comments
Examinees are able to leave comments throughout the duration of the exam by either
clicking the comment button at the bottom of the screen or pressing ALT+M, which
opens a comment window. It is suggested that you only leave comments after you have
completed all the questions. No extra time will be added to the exam for the time taken
to write comments.

What Kinds of Questions Are Asked?
The certification test consists of four different question types: single choice, multiple
choice, fill in the blanks, and open questions.

Single Choice Questions
A single choice question begins with a question or comment and is sometimes accom-
panied with some PHP code or code output.The examinee is requested to choose a

14 7090 ch13 7/16/04 8:43 AM Page 204

205What Kinds of Questions Are Asked?

single answer from a given selection of between two and six answers.There is only one
correct answer for these types of questions and only one answer can be marked.You will
normally notice answers that might seem correct but because of some small detail, they
are not. Pay attention to exactly what is being asked!

An example of a single choice question is

What does PHP stand for?

A. People Helping People

B. PHP Hypertext Preprocessor

C. PHP Hypertext Preprocessing

D. Perl Hypertext Preprocessor

Figure 13.1 shows an example of how a single choice question would appear in an
exam.

Figure 13.1 A single choice question.

Multiple Choice Questions
Constructed similar to single choice questions though with one major difference; the
multiple choice questions have between two and four correct answers.The examinee is
notified of the number of correct answers that should be checked.This tip might not
exist in future versions on the PHP certification—in which case, it will be up to the
examinee to decide how many answers he thinks are correct and should be marked.

14 7090 ch13 7/16/04 8:43 AM Page 205

206 Chapter 13 Getting Ready for the Certification Exam

An example of a multiple choice question is

Which of the following are directives in the php.ini file? (Choose three.)

A. session.save_handler

B. asp_tags

C. output_buffering

D. flush

Figure 13.2 shows an example of how a multiple choice question would appear in an
exam.

Figure 13.2 A multiple choice question.

Fill in the Blanks Questions
The examinee is provided with one or more sentences that have had parts extracted and
replaced with underscores.The examinee then chooses the most appropriate set of
extractions that, when placed back in to the sentence, make it correct.There is only one
correct answer for this type of question.

14 7090 ch13 7/16/04 8:43 AM Page 206

207What Kinds of Questions Are Asked?

An example fill in the blank question is

PHP is a general purpose ___________ language that is mostly used for
___________ and can be embedded in ___________.

A. Web,Web development, web pages

B. scripting,Web development, HTML

C. scripting, server-side development, JavaScript

D. procedural,Web development, HTML

Open Questions
An open question is probably the most difficult question type where the examinee is
requested to give text answers to the question.There are no choices here but just a text
box for the answer.The majority of these questions will request a PHP function name
(do not include the parentheses in the answer), where others might request the output of
a code snippet or other PHP keywords.

An example open question is

What function in PHP is used to display an HTML output of the PHP configura-
tion and setup?

Answer: __________________

Figure 13.3 shows an example of how an open question would appear in an exam.

Figure 13.3 An open question.

14 7090 ch13 7/16/04 8:43 AM Page 207

14 7090 ch13 7/16/04 8:43 AM Page 208

Practice Exam Questions

1. Which of the following strings are not valid modes for the fopen() function?

A. a+b

B. b+a

C. at

D. w

E. x+

2. Consider the following piece of code:
<?php

$arr = array(3 => “First”, 2=>“Second“, 1=>“Third“);
list (, $result) = $arr;

?>

After running it, the value of $result would be

A. First

B. Second

C. Third

D. This piece of code will not run, but fail with a parse error.

3. In standard SQL-92, which of these situations do not require or cannot be handled
through the use of an aggregate SQL function? (Choose 2)

A. Calculating the sum of all the values in a column.

B. Determining the minimum value in a result set.

C. Grouping the results of a query by one or more fields.

D. Calculating the sum of all values in a column and retrieving all the values of
another column that is not part of an aggregate function or GROUP BY clause.

E. Determining the mean average of a column in a group of rows.

4. Multidimensional arrays can be sorted using the ______ function.

15 7090 Practice Exam 7/16/04 8:42 AM Page 209

210 Practice Exam Questions

5. When using the default session handler files for using sessions, PHP stores
session information on the harddrive of the webserver.When are those session
files cleaned up?

A. PHP will delete the associated session file when session_destroy() is
called from within a script.

B. When the function session_cleanup() is called, PHP will iterate over all
session files, and delete them if they exceeded the session timeout limit.

C. When the function session_start() is called, PHP will iterate over all
session files, and delete them if they exceeded the session timeout limit.

D. When the function session_start() is called, PHP will sometimes iterate
over all session files, and delete them if they exceeded the session timeout
limit.

E. Session files are never removed from the filesystem, you need to use an auto-
mated script (such as a cronjob) to do this.

6. What is the order of parameters in the mail() function?

A. subject, to address, extra headers, body

B. to address, subject, extra headers, body

C. to address, subject, body, extra headers

D. subject, to address, body, extra headers

7. Which of the following statements are correct? (Choose 3)

A. sprintf() does not output the generated string.

B. printf(“%2s%1s“, “ab“, “c“) outputs the string abc.

C. vprintf() takes at least one parameter; the first parameter is the formatting
string and the following parameters are the arguments for the ‘%’
placeholders.

D. printf(“%c“, “64“) will output @ and not 6.

E. sprintf(“%3.4f“, $x) outputs more than 7 characters.

F. number_format() inserts thousands of separators and decimal points differ-
ent from (,) and (.) respectively, while printf() like functions always use
(.) as decimal point.

15 7090 Practice Exam 7/16/04 8:42 AM Page 210

211Practice Exam Questions

8. The requirement is to return true for the case in which a string $str contains
another string $substr after the first character of $str? Which of the following
will return true when string $str contains string $substr, but only after the first
character of $str?

I.
<?php

function test($str, $substr) {

return strpos(substr($str,1), $substr) >= 0;

\}

?>

II.
<?php

function test($str, $substr) {

return strrchr($str, $substr) !== false;

\}

?>

III.
<?php

function test($str, $substr) {

return strpos($str, $substr) > 0;

\}

?>

A. I only

B. II only

C. III only

D. I and II

E. I and III

F. II and III

9. Which of the features listed below do not exist in PHP4? (Choose 2)

A. Exceptions

B. Preprocessor instructions

C. Control structures

D. Classes and objects

E. Constants

15 7090 Practice Exam 7/16/04 8:42 AM Page 211

212 Practice Exam Questions

10. What is the output of the following code snippet?
<?php

class Vehicle {

\}

class Car extends Vehicle {

\}

class Ferrari extends Car {

\}

var_dump(get_parent_class(“Ferrari”));

?>

A. string(7) “Vehicle“

B. string(3) “Car“

C. array(2) {

[0]=>

string(7) “vehicle“
[1]=>

string(3) “car“
\}

11. The following PHP script is designed to subtract two indexed arrays of numbers.
Which statement is correct?

<?php

$a = array(5, 2, 2, 3);

$b = array(5, 8, 1, 5);

var_dump(subArrays($a, $b));

function

subArrays($arr1,

$arr2)

{

$c = count($arr1);

if

($c != count($arr2))

return

null;

15 7090 Practice Exam 7/16/04 8:42 AM Page 212

213Practice Exam Questions

for($i = 0;

$i < $c;

$i++)

$res[$i]

$arr1[$i] - $arr2[$i];

return $res;

\}

?>

A. The script is valid.

B. Assignments must be made on a single line.

C. It has too many linefeed characters between statements.

D. No, the script is missing curly braces.

E. Yes it is valid, but the script will not work as expected.

12. What is the purpose of the escapeshellarg() function?

A. Removing malicious characters.

B. Escaping malicious characters.

C. Creating an array of arguments for a shell command.

D. Preparing data to be used as a single argument in a shell command.

E. None of the above.

13. The _________ function can be used to determine if the contents of a string can
be interpreted as a number.

14. Assume $comment contains a string.Which PHP statement prints out the first 20
characters of $comment followed by three dots (.)?

A. print substr($comment, 20) . ‘...‘;

B. print substr_replace($comment, ‘...‘, 20);

C. print substr($comment, 20, strlen($comment)) . ‘...‘;

D. print substr_replace($comment, 20, ‘...‘);

15. What is the name of the function that you should use to put uploaded files into a
permanent location on your server?

16. If you have a file handle for an opened file, use the __________ function to send
all data remaining to be read from that file handle to the output buffer.

15 7090 Practice Exam 7/16/04 8:42 AM Page 213

214 Practice Exam Questions

17. Which of the following sentences are not true? (Choose 2)

A. strpos() allows searching for a substring in another string.

B. strrpos() allows searching for a substring in another string.

C. strpos() and strrchr() return -1 if the second parameter is not a sub-
string of the first parameter.

D. strpos() and strrpos() can return a value that is different from an integer.

E. The second parameter to substr() is the length of the substring to extract.

F. strstr() returns false if the substring specified by its second parameter is
not found in the first parameter.

18. Which of the following sentences are correct? (Choose 2)

A. time() + 60*60*100 returns the current date and time plus one hour.

B. time() + 24*60*60 returns the current date and time plus one day.

C. time() + 24*60*60*100 returns the current date and time plus one day

Answers
1. B

2. C

3. C and D

4. array_multisort or array_multisort()

5. D

6. C

7. A, D, and F

8. C

9. A and B

10. A

11. B

12. D

13. is_numeric or is_numeric()

14. B

15. move_uploaded_file or move_uploaded_file()

16. fpassthru or fpassthru()

17. C and E

18. B

15 7090 Practice Exam 7/16/04 8:42 AM Page 214

Ad Hoc To improvise solely in
response to a particular situation and/or
problem without considering wider
issues.

Aggregate functions Special SQL
functions that take the values from multi-
ple rows of data to produce a single result
per grouping. Examples of aggregate
functions include MIN(), MAX(), COUNT(),
SUM(), and AVG().

API (Application Programming
Interface) A set of definitions by
which a particular interface is accessed.
The PHP API refers to the catalog of
procedures and functions available for use
from a userspace script.

Associative Arrays An array indexed
by associative (or string) keys.Array val-
ues are referenced by their “associated”
key names.

ASP Scripting environment provided
by Microsoft for its IIS (Internet
Information Services) web server in
which HTML is combined with script-
ing and reusable ActiveX or .NET com-
ponents to create dynamic web pages.

Array A collection of data items identi-
fied by numeric and/or string indices.
Arrays in PHP can also contain other
arrays; an array that only contains other
arrays is referred to as a multidimensional
array.

Blocking and nonblocking calls A
blocking call is one that will “block” fur-
ther execution of your script until condi-
tions permit it to successfully complete
or a predefined timeout occurs.A non-
blocking call, by contrast, will fail imme-
diately if it is not capable of completing
its operation.

Boolean An expression or variable that
has two possible values:“true” and “false.”

Bytecode A meta language used by the
PHP compiler to represent your script
internally. Once your script has been
converted to bytecode by the compiler, it
will be passed to the executor to be run.

Bytecode cache By default PHP will
recompile your script into bytecode
every time your page is requested
whether the source code for your page
has changed or not.A bytecode cache
will compile your scripts once and reuse
the bytecode until your script changes.

C A programming language originally
designed by Dennis Ritchie at AT&T
Bell Labs in 1972 for systems program-
ming on the PDP-11 and soon after used
to re-implement UNIX. It was dubbed
“C” because of the many features inher-
ited from an earlier language named “B.”

Glossary

16 7090 Glossary 7/16/04 8:45 AM Page 215

216 Class

Class A class definition is a prototype
for an object in an object-oriented lan-
guage defining member properties and
methods for use within the class or
object instantiation.

Client side Any operation that occurs
on the client’s machine (usually within
the context of a web browser).Typically,
client-side operations are performed
using JavaScript, Java Applets,
Macromedia Flash, or ActiveX compo-
nents. Client-side operations do not have
direct access to server-side processes such
as PHP.

Clone Creates a copy of an object. In
most cases, this simply means copying
property values from the original object
to the new object; however, cloning
might require performing alteration or
separation logic so that the new object
does not create a resource conflict. In
PHP 4, objects are cloned by default. In
PHP 5, objects are implicitly referenced
and only cloned by explicit request.

Column Together with row defines
a specific unit of information with a
database table.All values within a given
column describe the same type of infor-
mation (that is, name, address, password,
and so on). Columns are also referred to
as fields.

Command Injection A form of exploit
attack, similar to SQL Injection, used
against scripts that do not adequately val-
idate or filter user supplied data.When
unfiltered and unvalidated data is passed
to a command-line function (exec(),
system(), backtick operator, and so on),
it can potentially allow a malicious user
to execute arbitrary shell commands
leading to disastrous results. See
Chapter 11.

Constants Similar to a variable except
that it exists outside of variable scooping
and can only be defined once.A con-
stant’s value cannot be changed once it is
defined.

Cookie A parameter supplied by the
web server to the browser that the
browser is expected to send back to the
web server on its next visit.They can be
set from PHP using the set_cookie()
command and retrieved on next request
in the $_COOKIE superglobal.

Cross-Site Scripting Also known as
XSS, this is a form of exploit attack in
which a malicious user supplies content
to be later displayed on your website
(such as with a forum).This content is
designed to fool other user’s browsers
into sending sensitive information to an
untrusted target. See Chapter 11.

Data Validation Scanning and some-
times filtering user supplied data to limit
provided information to sensible con-
straints.This can be as simple as requiring
an age field that only contains numbers,
to as complex as ensuring that a URL is
well formed and that the resource it
refers to exists.

Database A database is a generalized
term for describing a logical grouping of
data. Usually the term database will be
used to refer to an RDBMS or a specific
schema within an RDBMS.

Database indexing A database index
enables your RDBMS to more quickly
find data based on identifying fields. For
example, if you plan to allow searching
by name, creating an index on the name
field in your database will yield faster
lookup results.

16 7090 Glossary 7/16/04 8:45 AM Page 216

217Grouping

Date arrays A compound representa-
tion of the current date and time using
component values (month, day, year, hour,
minute, second) contained in an array.
Date arrays are used by a number of PHP
functions, such as gettimeofday().

Date Formatting Strings Used with
date() and strftime(), Date
Formatting Strings contain a series of
tokens along with ordinary string charac-
ters to translate a UNIX timestamp into
a human readable date string.

Debuggers (DBG, APD, XDebug)
Debugger applications and extensions
allow a developer to track the runtime
execution of a script highlighting variable
values and logic flow. Examples of
debugging tools include DBG,APD, and
XDebug. See Chapter 12.

Difference (Array Difference) All ele-
ments that are unique to only one of two
or more arrays.The result of calling
array_diff ().

Epoch Midnight on January 1, 1970, in
the UTC time zone. UNIX timestamps
are measured as the number of seconds
from this date.

Email Electronic messages passed from
one computer to another; this is often
done across a network using SMTP and
delivered locally using an MTA.

Error logging Error logging (usually to
a file) allows you as the site maintainer to
keep a close eye on error conditions in
your script.At the same time, this hides
errors from your users who at best will
not know what to do with the messages,
or at worst will use those errors to com-
promise your site.

Escaping Minor transformation on user
supplied data used to avoid SQL and
Command Injection attacks.

Exceptions A runtime error reporting
mechanism that provides a clean means
of throwing and handling errors while
preserving the environment stack.

File wrappers A file wrapper defines
how a specific implementation of a
stream type should behave. Examples of
file wrappers include the http:// and
ftp:// wrappers, which implement specif-
ic protocols over network socket streams.
See Chapter 10.

Foreign key A special type of key that
enforces Referential Integrity.

Function A set of instructions that can
manipulate the behavior of arguments
passed and optionally return data to the
calling scope. Functions that never
return values are sometimes referred to as
procedures.

GET method The standard HTTP
method for retrieving documents, web
pages, and simple web application output
from a web server. GET requests include
the path and filename of the desired
resource along with an optional set of
request parameters passed with the URL.
The maximum size of a GET request is
determined by the HTTP specification
of a URL length (currently 2,048
characters—including path and filename
itself).

Grouping Used with aggregate func-
tions to combine data from multiple rows
and/or multiple tables into complex
results.

16 7090 Glossary 7/16/04 8:45 AM Page 217

218 Hard-Coded

Hard-Coded Data or values written
directly into a program that cannot easily
be modified during runtime.

Headers A set of name and value pairs
provided prior to email or HTTP con-
tent to define the constraints of the asso-
ciated content. Examples of header
names include Content-Type, Content-
Length, To, From, Subject, Content-
Disposition, MIME-Version, and others
as defined by the specific transport
syntax.

Heredoc A string encapsulation format
(similar to single and double quotes) that
allows arbitrary delimiters. It is often used
for interpolating variables within a very
large string of data content.

HTML (Hypertext Markup Language)
Document format most commonly used
on the World Wide Web.

HTTP (Hypertext Transfer Protocol)
The underlying application protocol used
by web servers and browsers to request
and transmit web pages and other docu-
ments. Refer to RFC 1945 and 2068 for
more information.

Index A collection of one or more key
columns in a database table that organizes
information for faster retrieval and
updating.

Inheritance Inheritance is the capabili-
ty to derive new classes from existing
ones.A derived class (also known as a
child, or subclass) inherits the instance
variables and methods from the base class
(or a “superclass”) and might add new
instance variables and methods. New
methods can be defined with the same
name as those in the base class; if this is
the case, the new methods will override
those defined in the superclass.

Instantiation Creating an object from a
class definition.

Internal pointer A psuedo-attribute
common to all arrays in PHP. Initially
this pointer looks at the first value in an
array:Actions such as next(), prev(),
reset(), and end() move the internal
pointer forward, backward, and to the
beginning and end of the array, respec-
tively.The current key and value pointed
to by an array’s internal pointer can be
accessed with key() and current(),
respectively.

Interpreter A program that compiles
and executes human readable program
code.

Intersection (Array Intersection) All
common elements of two or more arrays.
The result of calling
array_intersect().

Key Key columns are the components
of indices that describe for the database
how the information in a given table is
organized.A database that is indexed on a
given column is said to be “keyed” to
that column.

MIME (Multipart Internet Message
Extensions) Encoding Originally
defined by RFC 1341, MIME Encoding
extends basic email encapsulation (which
is limited to a single text body section)
to allow for an arbitrary number of
attachments—each of which might use a
distinct content type and encoding.

MTA (Mail Transport Agent) A piece
of software that routes messages within a
given host often providing an SMTP
implementation and a sendmail wrapper.

Multidimensional arrays An array that
only contains other arrays.

16 7090 Glossary 7/16/04 8:45 AM Page 218

219Pass By Reference

Nesting A form of logical grouping
used with expressions and/or code
blocks. Nesting helps define priority and
functional process steps.

.NET (dot net) A Microsoft supported
API standard for language independent
class interoperability. .NET is best show-
cased in C# but is supported by bindings
from several languages including PHP.

Numeric arrays An array indexed by
numerical keys.Typically assigned
sequentially from 0 upward and com-
monly accessed by an array walk or for
loop.

Objects Objects are collections of data
and related code that support and act on
that data. Objects in PHP, like most
object-oriented languages, support inher-
itance, exceptions, and polymorphism.

Open Basedir The php.ini setting
open_basedir is a technique used on
many Shared Hosting providers (along
with safe_mode) to limit the ability of
one user to read another user’s files.
When this setting is used, any running
script is restricted from using fopen() or
other filesystem access functions on files
that reside outside the directory speci-
fied. However, on systems where arbi-
trary CGI scripts can be run or where
the exec() family of functions is left
enabled, the effectiveness of
open_basedir is severely limited as any
program or script written in another lan-
guage might effectively bypass
open_basedir restrictions. See
Chapter 11.

Operators Operators are symbolic
expressions usually referring to mathe-
matical tasks such as addition, subtrac-
tion, multiplication, and division.

Output Data results transferred from a
computer system to the outside world via
some kind of output device such as a ter-
minal or printer. In the case of PHP
scripts, this usually refers to HTML sent
to a web browser to be rendered as a
web page.

Output buffering Output buffering,
controlled by settings in your php.ini or
use of the ob_start() function, causes
generated output to be temporary stored
in memory.While generally streamlining
the output pipeline, this process also
enables an executing script to cancel,
modify, or inject content even after “out-
put” has already started.This also means
that the header() command can be used
after content has been output (normally
not allowed).

Output caching Often the output
generated by a given page (report pages
in particular) will be exactly the same
over a period of time.An otherwise
lengthy script run can be designed to
output pregenerated content rather than
repeating the same task over and over
again. See Chapter 12.

Parsing Parsing refers to the process by
which program source code is broken
into smaller, more distinct chunks of
information that can be more easily
interpreted and acted on.

Pass By Reference Pass a variable to a
function by first copying it.Any changes
made to the passed variable from within
the function will not affect the original
value.This is the default behavior for
function variables in PHP.

16 7090 Glossary 7/16/04 8:45 AM Page 219

220 Pass By Value

Pass By Value Pass a variable to a func-
tion by creating a reference to it.Any
changes made to the passed variable from
within the function will be reflected in
the original variable.This is done by
placing an ampersand before the variable
to be passed by reference within the
function declaration.

PHP (PHP: Hypertext Preprocessor)
PHP is a server-side, cross-platform;
HTML embedded scripting language
most commonly used to create dynamic
internet environments. Much of the lan-
guage syntax is borrowed from C, Java,
and PERL—with a unique flavor of its
own. PHP was originally developed by
Rasmus Lerdorf and then extended by
Andi Gutmans, Zeev Suraski, and an
assorted group of programmers from all
over the world. PHP is distributed under
the PHP license, which is a derivative of
the BSD license and is considered an
Open Source Project.

Primary key A specific type of index
used to uniquely identify a row in a data-
base table.

Polymorphism A property of object
inheritance that enables methods of the
same name to perform different actions
through successive generations of a class
definition.

POST method The standard HTTP
method for sending form content to a
web server for online processing.A POST
request is similar to a GET request except
that the parameters (form data) are sent
separately and have no hard limits on size
(except those configured by the server
administrator).

RDBMS (Relational Database
Management System) An RDBMS
will contain one or more schemas (or
databases)—each of which composes one
or more tables with one or more
columns (or fields) each.

Reference A single variable in memo-
ry pointed to by two or more variable
labels. If $a is a reference of $b, changing
the value of $a will reflect in the value of
$b and vice versa.

Referential Integrity An assurance
that the information between tables that
relate to each other is self-consistent.

Register Globals A sometimes contro-
versial php.ini setting (register_
globals) that, when enabled, causes all
data originating from GET or POST forms,
as well as cookies, to be populated into
the global scope. See Chapter 11.

Regular Expression (regex) Regular
expressions provide a robust language for
specifying patterns in strings and extract-
ing or replacing identified portions of
text.

Resources A special PHP variable type
that refers to a more complex underlying
data structure. Streams, database connec-
tions, and query result resources are the
most common types of resources you’ll
encounter.

Row A single record of data within a
database table and uniquely identified by
that table’s primary key.Together with
column identifies specific units of data.

16 7090 Glossary 7/16/04 8:45 AM Page 220

221Shared Hosting

Safe mode The php.ini setting
safe_mode is a technique used on many
Shared Hosting providers (along with
open_basedir) to limit the ability of one
user to read another user’s files.When
this setting is enabled, a given script is
only allowed to read files that are owned
by the same user as the currently running
script. However, on systems where arbi-
trary CGI scripts can be run or where
the exec() family of functions is left
enabled, the effectiveness of safe_mode is
severely limited as any program or script
written in another language might effec-
tively bypass safe_mode restrictions. See
Chapter 11.

Schema One or more large structured
sets of persistent data, usually grouped
with other schemas within an RDBMS.
A simple schema (or database) can be a
file containing many records—each of
which contains a common set of fields
where each field is a certain fixed width.

Scope Each function or object method
maintains its own “scope” or variable
stack—that is, $foo within a function is
not the same variable as $foo outside a
function.The exception to this rule are
superglobals and constants that transcend
scope and are equally available from any
location within a script provided that
they have been defined.

Script A specific type of computer pro-
gram that can be directly executed as
source code by an interpreter program
that understands the language in which
the script is written. Scripts are typically
compiled “on-the-fly” during each exe-
cution. Some languages, such as PHP, can
be precompiled using a Bytecode cache.

Sendmail wrapper A standard API, in
the form of an executable program, used
by most UNIX MTAs such as Sendmail,
Postfix, Exim, Qmail, and Smail. PHP
uses this wrapper when the mail() func-
tion is called and the php.ini value
sendmail_path is defined.

Server side Any operation that is per-
formed on the web server prior to send-
ing content back to the web browser (or
client). PHP (similar to most CGI-based
languages) is entirely server side.After the
output has been generated and sent to
the browser, PHP no longer has interac-
tion with the client until a new request is
made.

Session A mechanism for persisting
information between page requests from
a particular user.After calling
session_start(), data stored in the
$_SESSION superglobal will continue to
be accessible in future page requests from
a client identified by a cookie, POST vari-
able, or GET parameter.

SGML (Standard Generalized Markup
Language) The parent standards defini-
tion of both HTML and XML. SGML
provides a foundation for defining syn-
tactically compatible markup languages.

Shared Hosting Command to many
low-cost web service providers.A Shared
Hosting server, as the name implies, is
used by multiple unrelated parties who
share limited, if any, trust.While offering
attractive pricing, Shared Hosting opens
the door to potential security risks, as
unknown third parties might be able to
gain access to sensitive information
stored in your scripts, such as database
passwords. See Chapter 11.

16 7090 Glossary 7/16/04 8:45 AM Page 221

222 Serialization

Serialization Reformatting the con-
tents of an array or object into a string
value that can then be stored in a file or
database.

SMTP (Simple Mail Transfer Protocol)
Originally defined in RFC 821, the
objective of SMTP is to transfer mail
reliably and efficiently between remote
servers on the Internet.

Sockets A socket is an end point for a
two-way communication stream.The
most common use of sockets in PHP
is for network communications using
the INET socket family. Sockets can
be opened as a stream using the
fsockopen() function or as a socket
resource using the sockets extension
and the socket_*() family of functions.
See Chapter 10.

Sorting Reorganizing the output of a
select query or array by the values in a
given column or columns. See Chapters
4 (Arrays) or 9 (PHP and Databases).

SQL Injection A form of exploit
attack, similar to Command Injection,
used against scripts that do not adequate-
ly validate or filter user supplied data.
When unfiltered and unvalidated data is
passed to a SQL query, it can potentially
allow a malicious user to execute arbi-
trary SQL commands enabling him to
steal and/or destroy important informa-
tion. See Chapter 11.

Static method An object method that,
although it performs object related func-
tions, does not require an object instance.

Streams A stream is a generalized term
for any sequential access input/output
information pipeline. Examples of streams
include ordinary files, network sockets,
FIFOs, UNIX Domain sockets, character
devices, or even blocks of memory.
Regardless of type, all streams can be
accessed using a common set of API calls
known as the streams layer.These API
calls include fopen()/fsockopen(),
fread(), fwrite(), fclose(), file(),
file_get_contents(), and many others.
See Chapter 10.

String A string is a sequence of charac-
ters that are considered as a single data
element.

Structured code A generalized term
defining the organization of code into
logical groups.This might refer to tem-
plating, which separates your application
logic from your presentation layer, or the
organization of your application logic
into procedural and/or object-oriented
groups.

Superglobal A special internally
defined variable that is always in scope.
The standard complement of superglobals
include $_GET, $_POST, $_REQUEST,
$_COOKIE, $_SESSION, $_SERVER, $_ENV,
$_FILE, and $GLOBALS. Each of these is
an array; however, some might be empty
if no related data is available.

Syntax An orderly system and set of
rules by which a programming language
can be consistently interpreted and exe-
cuted.

Table A table is a logical unit within a
database that describes one or more rows
of data made up of one or more columns
(or fields).

16 7090 Glossary 7/16/04 8:45 AM Page 222

223ZEND

Templating A process of separating
code logic from presentation layer by
embedding simple tokens within HTML
content, and then allowing a template
parser to replace the tokens with code
and database driven content.

Ternary operator The ternary opera-
tor is a shorthand version of an
if/then/else statement.Three expres-
sions are grouped as (condition) ?
(if-true) : (if-false),. If the first
expression is true, the second condition
will be evaluated; if it is false, the third
will be evaluated instead. See Chapter 12.

Transaction A collection of one or
more SQL statements that are to be
committed to a database engine as a sin-
gle atomic operation.Transactions help
ensure data integrity by guaranteeing that
either all, or none, of a given set of SQL
statements will be processed.

UNIX timestamp The standard for
representing a date and time in most
applications designed for POSIX compli-
ant unixes including PHP.A UNIX
timestamp is a measure of the number of
seconds that have passed since the UNIX
Epoch (Midnight, Jan 1, 1970 UTC).

UTC (Coordinated Universal Time)
Also known as GMT (Greenwich Mean
Time) and located along the prime
meridian. UTC is the central time zone
against which all other time zones are
measured relative to.

Variable A named memory location in
which a program can store intermediate
results.

Variable variables The process of
referring to a variable by a name that is
determined at runtime.

Walking Iterating through each of the
elements of an array and applying a con-
sistent set of operations to each element.

XML (Extensible Markup Language)
An extremely simple dialect of SGML
designed by the W3C with the specific
purpose of serving, receiving, and pro-
cessing SGML on the Web in a way simi-
lar to HTML. XML has been designed
for ease of implementation, dynamic
extension, and for interoperability with
both SGML and HTML.

ZEND The PHP language engine,
named for its co-creators Zeev Suraski
and Andi Gutmans, which handles the
compilation and execution of PHP
scripts as well as management of the
PHP API.

16 7090 Glossary 7/16/04 8:45 AM Page 223

16 7090 Glossary 7/16/04 8:45 AM Page 224

Symbols
!== (identity) operator, code writing

guidelines, 190
++ (prefix incrementing) operator, 15
— (prefix decrementing) operator, 15
== (is equal) operator, 90
=== (identity) operator, 90

code writing guidelines, 190

A
addition (+) operator, 15
aggregate functions, 152

AVG(), 152
COUNT(), 152
MAX(), 152
MIN(), 152

AND operator (logical), 18
applications, scripts

elements of, 6
sample, 7
tags, 7-8

arbitrary offsets, substrings, matching,
92-93

arguments in functions
func_get_arg(), 31-32
func_num_arg(), 31-32

arithmetic operators
addition (+), 15
division (/), 15
multiplication (*), 15
prefix decrementing (—), 15
prefix incrementing (++), 15
subtraction (-), 15

array() function, 62-63
array operator ([])

arrays, creating, 64-65
elements, 63

assigning values to, 64

arrays
array operator ([])

assigning values to elements, 64
elements, 63

common elements, intersection of, 84-85
creating

with array ([]) operator, 64-65
with array() function, 62-63

differences, calculating, 85
elements

checking for existence of, 73
counting, 65
keys, 11

files, converting with file() function, 112
functions, manipulating, 76-78
keys

case, changing, 74
extracting from other arrays, 72
manipulating, 72-76
sorting by, 74-76

merging, 82-84
multidimensional, 66-68

sorting, 78-81
navigating, 68-71
overview, 61
randomizing, 81-82
serializing, 85-86
values, assigning to multiple variables,

65-66
array_change_key_case() function, 74
array_diff() function, 85
array_diff_assoc() function, 85
array_intersect() function, 84-85
array_keys() function, 72
array_keys_exists() function, 73
array_merge() function, 82-84
array_multisort() function, 78-81
array_rand() function, 81-82
array_walk() function, 71
arsort() function, 77-78
asort() function, 77-78

Index

17 7090 index 7/16/04 8:43 AM Page 225

226 assigning

assigning
values to elements via array operator ([]),

64
variables by reference, 38-42

assignment operator, 14
associativity in operators, 19-20
attachments (email)

images, sending (HTML), 137-139
text files, sending, 135-139

auto_detect_line_endings setting
(php.ini file), 162

AVG() function, 152

B - C
Bcc header (email), 133
bitwise operators, 16
blacklist approach, data filtering, 178
blocking mode (sockets), 169-170
Boolean values, true/false conditions, 11
built-in file wrappers, 159-160
bytecode caches

commercial, 197
function of, 196-197
open-source, 197

caching solutions, code optimization,
196-197

callback function, walking through
arrays, 71

case of array keys, changing, 74
case statement, 23-25
Cc header (email), 133
chgrp() function, file groups, changing,

111
chmod() function, file modes,

changing, 111
chown() function, file ownership,

changing, 111
class constructs, declaration of, 36-37
classes

declaring (class construct), 36-37
encapsulation, 35
function of, 36
inheritance, 35

implementation process, 42-44
instantiating (new operator), 37
as namespaces, 37-38

client-side processing
JavaScript example, 50-51
versus server-side processing, 50-51

closing
file wrappers, 162
files via fclose() function, 107
sockets, 171

closing tags, 7-8
code

debugger types, 193
flattening of if statements, 187-188
logical groupings, 186
optimization, caching techniques, 196-197
program documentation, 186
whitespace, 186
writing

command splitting over multiple lines, 188
embedding of if statements, 191-192
predefined standards, 186
tag styles, 189
testing for resource allocation, 190-191
use of concatenation operator, 188-189
use of condition statements, 189-190
use of identity operators, 190

columns (tables), data types, 146
combined assignment operators, 19
comments (exam), entering, 204
COMMIT TRANSACTION command,

153
comparing strings

via comparison operators, 90
via strcasecmp() function, 91
via strcmp() function, 91

comparison operators, 17-18
== (is equal), 90
=== (is identical), 90

difference (!=), 17
equality (==), 17
greater than (>), 17
greater than or equal (=>), 17
less than (<), 17
less than or equal (<=), 17

compressing output scripts, perform-
ance optimization measures, 195

concatenation operator
code writing readability, 188-189
string manipulation, 17

condition statements, 189-190
conditional structures

case statement, short form syntax, 23-25
if-then-else statement, 21-22

alternative syntax, 22
short form syntax, 22

overview, 21-22

17 7090 index 7/16/04 8:43 AM Page 226

227DBMSs

connecting remote hosts via sockets,
166-167

constants
creating via define () construct, 14
function of, 14

context (streams), creating, 165
continue statement in loop structures,

28
cookies

headers, 54-55
session management, 56-57
transaction process, 54-55

Coordinated Universal Time (CUT), 116
copy() function, use with file wrappers,

163
copying files via fcopy() function, 110
count() function, 152

array elements, counting, 65
CREATE TABLE statement (DBMSs),

149
cross-site scripting (XSS), security

issues, 180

D
data

arrays, 11
Boolean values, true/false conditions, 11
constants

creating via define () construct, 14
function of, 14

containment via variables, 12
extraction via regular expressions, 100-101
forms, handling via superglobal arrays,

51-54
manipulation of, 9-12
NULL type, 11
numeric types

integer, 9-10
real, 9-10

operators, 14
arithmetic, 15
assignment, 14
associativity, 19-20
bitwise, 16
combined assignment, 19
comparison, 17-18
error-control, 16-17
logical, 18

precedence, 19-20
string, 17
typecasting, 19

resource values, 12
strings

extracting, 95-96
values, declaration methods, 10-11

variables, substitution in strings, 13
data filtering

blacklist approach, 178
whitelist approach, 178

database administrators (DBAs), indices
optimization, 147

database management servers. See
DBMSs

databases
data impurities, 153-154
date handling, 154
escape sequences, 153-154
indices

foreign keys, 148
good writing rules, 147
primary keys, 148

information, sorting (ORDER BY
clause), 152-153

optimization measures
query limits, 195
table indexes, 195-196

resultsets, grouping, 151-152
shell command injections, security

vulnerabilities, 180
SQL injections, security vulnerabilities,

179
table indices, 147

date arrays, 115
element keys, 116
retrieving, 117-119

date formats
date arrays, 115-116
string-formatted dates, 115-116, 119-123
UNIX time stamps, 115-116

date() function, formatting tokens,
119-120

DBMSs (database management servers),
145

escape sequences, 153-154
indices

foreign keys, 148
good writing rules, 147
primary keys, 148

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 227

228 DBMSs

information, retrieving (SELECT
statement), 150

relational databases, 146
resultsets, grouping (GROUP BY clause),

151-152
tables

creating, 149
data, extracting, 150-151
indices, 147
rows, deleting, 149-150
rows, inserting, 149

transactions
COMMIT TRANSACTION command,

153
creating, 153
ROLLBACK TRANSACTION

command, 153
debuggers, 193
debugging code, resource allocations,

190-191
declaring

classes (class construct), 36-37
functions, 28
string values

double quotes, 10
heredoc syntax, 11
single quotes, 10

define() construct, constants, creating,
14

DELETE statement, table rows, deleting,
149-150

deleting files with unlink() function,
111

delivering email, troubleshooting issues,
139-140

difference (!=) operator, 17
differences in arrays, calculating, 85
division (/) operator, 15
do-while statement in loop structures,

26
documentation in code writing

(PHPDocumentor tool), 186
dollar sign ($) syntax (variables), 13
domains

email servers, MX records, 128
unique number of, 5

double quotes, string values, declaration
of, 10

dynamic data, performance
optimization measures, 194

E
elements in arrays

checking for existence of, 73
counting, 65

email
delivery of, 127

troubleshooting, 139-140
domains, MX records, 128
file attachments, 135-139
headers

Bcc, 133
Cc, 133
From, 133

HTML
attached images, sending, 137-139
security dangers, 130
sending, 134-135

junk filters, 130
Mail Transport Agent (MTA) examples,

128
Mail User Agent (MUA)

examples, 129
security holes, 130

messages, formatting, 133-135
PHP scripts

sending on Netware computers, 131-132
sending on UNIX computers, 130-131
sending on Windows computers, 131-132

plain-text, sending, 133-134
RFC series of documents, 140
SASL, 129
sending (mail() function), 132
SMTP, 128
spam, 129
subjects, setting, 133

embedding if statements, code writing
guidelines, 191-192

encapsulation (classes), 35
equality (==) operator, 17
equals sign (=) operator, code writing

guidelines, 189-190
error messages, displaying in browsers,

security dangers, 192-193
error suppression operators, preventing

error message display in browsers,
192-193

error-control operators, 16-17
escape sequences, 10, 153-154
escapeshellcmd() function, 180

17 7090 index 7/16/04 8:43 AM Page 228

229files

exam (Zend PHP Certification), 201
answers, reviewing, 204
comments, entering, 204
instructions, 203
nondisclosure agreement (NDA), 203-204
questions

fill-in-the-blank type, 207
multiple choice type, 205-206
navigating forward and backward, 204
number of, 203
open type, 207
single choice type, 204-205

registering, 201
test center walk-in, 202
via Pearson VUE Call Center, 202
via Pearson VUE Web site, 202

test centers
arrival time, 202
ID requirements, 202
locating, 201
materials provided, 203
personal belongings, 202

time limit, 203
explode() function, string splits, 101-102
expressions, output via tags, 8
external files, inclusion of, 8-9
extracting

data
from strings, 95-96
via regular expressions, 100-101

formatted data from strings, 96-97
keys from arrays, 72
table data from multiple tables, 150-151

F
fclose() function, 171

files, closing, 107
fcopy() function, files, copying, 110
fflush() function, flushing output to

files, 108
fgets() function, reading files single line

at time, 107-108
file handles, 166
file wrappers

built-in, 158-160
closing, 162
copy() function, 163

file() function, 163
file_get_contents() function, 163
filesystem functions, 162
function of, 158
readfile() function, 163
selecting, 158-159
supported operations, 161

allows appending, 160
allows reading, 160
allows simultaneous reading and writing,

161
allows writing, 160
restricted by URL, 160
supports mkdir() function, 161
supports rename() function, 161
supports rmfir() function, 161
supports stat() function, 161
supports unlink() function, 161

file() function
files, converting to arrays, 112
use with file wrappers, 163

fileatime() function, 110
filectime() function, 110
filegroup() function, 110
fileinode() function, 110
filemtime() function, 110
fileowner() function, 110
fileperms() function, 110
file_gets_contents() function, 113, 163
files

arrays, converting (file() function), 112
closing (fclose() function), 107
copying (fcopy() function), 110
deleting (unlink() function), 111
email attachments, 135-139
external, inclusion of, 8-9
flushing output to (fflush() function), 108
groups, changing (chgrp() function), 111
information, retrieving (fstats() function),

109
locking (flock() function), 111-112
modes, changing (chmod() function), 111
moving (rename() function), 111
opening (fopen() function), 106-107
outputting (fpassthru() function), 108
ownership, changing (chown() function),

111
reading (fread() function), 107
reading (readfile() function), 112

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 229

230 files

reading single line at time (fgets()
function), 107-108

shortcut functions, 109
fileatime(), 110
fileatype(), 110
filectime(), 110
filegroup(), 110
fileinode(), 110
filemtime(), 110
fileowner(), 110
fileperms(), 110
files_exists(), 110
filesize(), 110

is_dir(), 110
is_executable(), 110
is_file(), 110
is_link(), 110
is_readable(), 110
is_uploaded file(), 110
is_writable(), 110

strings, reading into (file_get_contents()
function), 113

versus scripts, 8
writing to (fwrite() function), 108-109

files_exists() function, 110
filesize() function, 110
filetype() function, 110
fill-in-the-blank questions (exam), 207
flattening if statements, code writing

readability, 187-188
flock() function, files, locking, 111-112
flushing output to files (fflush()

function), 108
fopen() function

error messages, 106
files, opening, 106-107
modes, 106

for loop, 26-27
arrays, navigating, 68-69

foreach loop, arrays, navigating, 69-70
foreign keys, databases indices, 148
formatted data, string extraction, 96-97
formatting

email messages, 133-134
strings, 93-95

forms
data, handling with superglobal arrays,

51-54
function of, 51

fpassthru() function, files, outputting,
108

fread() function, 107
From header (email), 133
fsockopen() function, 167-168
fstats() function, file information

retrieval, 109
functions, 109

aggregate
AVG(), 152
COUNT(), 152
MAX(), 152
MIN(), 152

array(), 62-63
array_change_key_case(), 74
array_diff(), 85
array_diff_assoc(), 85
array_intersect, 84-85
array_keys(), 72
array_keys_exists(), 73
array_merge, 82-84
array_multisort(), 78-81
array_rand(), 81-82
array_walk(), 71
arsort(), 77-78
asort(), 77-78
chgrp(), 111
chmod(), 111
count(), 65
date(), formatting tokens, 119-120
declaration of, 28
escapeshellcmd(), 180
explode(), 101-102
fclose(), 107, 171
fcopy(), 110
fflush(), 108
fgets(), 107-108
file(), 112
file_get_contents(), 113
fileatime(), 110
filectime(), 110
filegroup(), 110
fileinode(), 110
filemtime(), 110
fileowner(), 110
fileperms(), 110
files_exists(), 110
filesize(), 110
filetype(), 110
flock(), 111-112

17 7090 index 7/16/04 8:43 AM Page 230

231HTML

fopen(), 106-107
error messages, 106
modes, 106

fpassthru(), 108
fread(), 107
fsockopen(), 167-168
fstats(), 109
fwrite(), 108-109
getdate(), 117-118
gettimeofday(), 117
htmlentities(), 180
htmlspecialchars(), 180
is_dir(), 110
is_executable(), 110
is_file(), 110
is_link(), 110
is_readable(), 110
is_uploaded_file(), 110
is_writable(), 110
krsort(), 74-76
ksort(), 74-76
list(), 65-66
localtime(), 118-119
mail(), 132, 139
mktime(), 123
names, assigning, 29
parameters

default values, 29
passing by reference, 29
receiving, 29
variable number of, 31-32

pfsockopen(), 167-168
preg_replace(), 101
preg_split(), 101-102
printf(), 93-95
readfile(), 112
rename(), 111
reset(), 70-71
rsort(), 76-77
serialize(), 85-86
set_error_handler(), 192-193
shown(), 111
sort(), 76-77
split(), 101-102
sscanf() function, 96-97
str_replace(), 97-98
strcasecmp(), 91
strcmp(), 91
stream_context_create(), 165
stream_get_meta_data(), 164-165

stream_set_blocking(), 169-170
stream_set_timeout(), 170-171
stream_wrapper_register(), 160
strftime(), formatting tokens, 121-123
strip_tags(), 180
strncasecmp(), 92
strncmp(), 92
strstr(), 92-93
strtotime(), 123-124
substr(), 96
substr_replace(), 97
time(), 117
unlink(), 111
unserialize(), 85-86
variable functions, 32-33
variable scope, 30-31

func_get_arg() function, 31-32
func_num_arg() function, 31-32
fwrite() function, writing to files,

108-109

G - H
getdate() function, date array retrieval,

117-118
gettimeofday() function, UNIX time

stamp retrieval, 117
greater than (>) operator, 17
greater than or equal (=>) operator, 17
Greenwich Mean Time (GMT), 116
groups of files, changing (chgrp()

function), 111

hardware, performance optimization
measures, 193-194

headers (email)
Bcc, 133
Cc, 133
From, 133

headers (HTTP), cookies, 54-55
heredoc syntax, declaration of string

values, 11
HTML (Hypertext Markup Language)

email
attached images, sending, 137-139
security dangers, 130
sending, 134-135

forms, function of, 51
tags, code readability standards, 189

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 231

232 htmlentities() function

htmlentities() function, cross-site
scripting prevention, 180

htmlspecialchars() function, cross-site
scripting prevention, 180

HTTP (Hypertext Transfer Protocol)
browser requests, 50
cookies

headers, 54-55
session management, 56-57

sessions, persistent data, 56-57
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
identifiers

function of, 12
naming conventions, 12
validity of, 12

identity operators (===), code writing
guidelines, 190

if statements
embedding for code writing, 191-192
flattening for code writing purposes,

187-188
if-then-else statement, 21-22

alternative syntax, 22
short form syntax, 22

include construct, 8-9
include once construct, 8-9
inclusion of external files, 8-9
indices (databases), 147

foreign keys, 148
good writing rules, 147
primary keys, 148
tables, 147

infinite loops, 25
inheritance

classes, 35
implementation process, 42-44

inner joins, 150-151
intersection in arrays, common

elements, 84-85
INSERT statement, table rows,

inserting, 149
instantiating classes with new operator,

37
integer numeric data types, 9-10
internal pointers, array navigation, 70-71

Internet Engineering Task Force (IETF)
website, 172

Internet Mail Consortium website, 140
IPs, unique number of, 5
is equal (==) operator, 90
is identical (===) operator, 90
is_dir() function, 110
is_executable() function, 110
is_file() function, 110
is_link() function, 110
is_readable() function, 110
is_uploaded_file() function, 110
is_writable() function, 110
iteration structures, 25

continue statement, 28
do-while statement, 26
for loop, 26-27
while statement, 25-26

J - K
JavaScript, client-side processing, 50-51
joining tables, 150-151
junk email filters, 130

keys in arrays
case, changing, 74
extracting from other arrays, 72
manipulating, 72-76
sorting by, 74-76

krsort() function, array sorts by keys,
74-76

ksort() function, array sorts by keys,
74-76

L
languages

constructs
include, 8-9
include once, 8-9
require, 8-9
require once, 8-9

PHP functionality, 6
leading substrings, matching, 92
less than (<) operator, 17
less than or equal (<=) operator, 17
line endings, correct detection of text,

162

17 7090 index 7/16/04 8:43 AM Page 232

233opening

list() function, assigning array values to
multiple variables, 65-66

localtime() function, date array
retrieval, 118-119

locking files with flock() function,
111-112

logical operators
AND, 18
NOT, 18
OR, 18
XOR, 18

loop structures, 25
continue statement, 28
do-while statement, 26
for loop, 26-27
infinite loops, 25
while statement, 25-26

M
Mail Transport Agent (MTA), 128
Mail User Agent (MUA)

examples, 129
security holes, 130

mail() function
command-line parameters, 139
email, sending, 132

matching string portions in substrings,
92-93

MAX() function, 152
merging arrays, 82-84
messages

delivery problems, troubleshooting,
139-140

emails, formatting, 133-135
files, attaching, 135-139

MIME (Multipurpose Internet Mail
Extensions), 134

MIN() function, 152
mktime() function, retrieval of UNIX

time stamp from date array, 123
modes of files, changing (chmod()

function), 111
modifying substrings by offset, 97
moving files, rename() function, 111
multidimensional arrays, 66-68

sorting, 78-81
multiple choice questions (exam),

205-206

multiple tables, joining, 150-151
multiplication (*) operator, 15
Multipurpose Internet Mail Extensions

(MIME), 134
MX records, adding to email domains,

128

N
namespaces, treating classes as, 37-38
navigating arrays, 68-71
Netware, email, sending, 131-132
network servers, remote hosts,

connecting via sockets, 166-167
new operator, classes, instantiating, 37
nondisclosure agreement (NDA) for

exams, 203-204
NOT operator (logical), 18
NULL data type, 11
numeric data values

integer, 9-10
real, 9-10

O
object-oriented programming. See OOP
objects

serializing, 44-45
variables, assigning by reference, 38-42

OOP (object-oriented programming),
35

classes
declaring, 36-37
function of, 36
inheritance, 42-44
instantiating, 37
as namespaces, 37-38

encapsulation, 35
objects

assigning variables by reference, 38-42
serializing, 44-45

open questions (exam), 207
open_basedir directive, shared hosting

security, 180-181
open-source bytecode caches, 197
opening

files with fopen() function, 106-107
sockets, 167-168

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 233

234 opening tags

opening tags, 7-8
operators, 14

arithmetic, 15
array ([]), 63
assignment, 14
associativity, 19-20
bitwise

AND (&), 16
AND (|), 16
left-shift (<<), 16
NOT (), 16
right-shift (>>), 16
XOR (^), 16

combined assignment, 19
comparison, 17-18

difference (!=), 17
equality (==), 17
greater than (>), 17
greater than or equal (=>), 17
less than (<), 17
less than or equal (<=), 17

error-control, @ (at symbol), 16-17
logical

AND, 18
NOT, 18
OR, 18
XOR, 18

precedence, 19-20
string, concatenation (.), 17
typecasting

(array), 19
(float), 19
(int), 19
(object), 19
(string), 19

optimizing
code, caching techniques, 196-197
databases

query limits, 195
table indexes, 195-196

performance
compression of output scripts, 195
dynamic data handling, 194
hardware issues, 193-194
static data handling, 194
web server issues, 194

OR operator (logical), 18
ORDER BY clause, sorting databases,

152-153
outer joins, 150-151
outputting files, fpassthru() function,

108
ownership of files, changing (chown()

function), 111

P
parameters (functions)

default values, 29
passing by reference, 29
receiving, 29
variable number of, 31-32

patterns in regular expressions,
replacement of, 10

PCRE (Perl Compatible Regular
Expressions), 98

base character classes, 98-99
enumerator operators, 99-100
pattern modifiers, 100

Pearson VUE
Call Center, exam registration, 202
website

exam registration, 202
test center locator, 201

performance optimization, 193
compression of output scripts, 195
dynamic data handling, 194
hardware issues, 193-194
static data handling, 194
web server issues, 194

persistent data in sessions (HTTP),
56-57

persistent sockets, 168
pfsockopen() function, 167-168
PHP (Hypertext Preprocessor), 5

language functionality, 6
platform extensibility, 6
tags, code readability standards, 189

PHPDocumentor, code documentation
tool, 186

pipelines (Streams architecture), 165
plain-text emails, sending, 133-134
platforms, extensibility (PHP), 6

17 7090 index 7/16/04 8:43 AM Page 234

235rsort() function

POSIX regular expressions, 98
precedence rules (operators), 19-20
prefix decrementing (—) operator, 15
prefix incrementing (++) operator, 15
preg_replace() function, 101
preg_split() function, string splits,

101-102
primary keys (database indices), 148
printf() function

family functions
fprint(), 95
sprint(), 95
vprint(), 95
vsprint(), 95

format specifiers, 93-95
strings, formatting, 93-95

processing forms via superglobal arrays,
51-54

Q - R
queries, limiting for database

optimization measures, 195
questions (exam)

fill-in-the-blank type, 207
multiple choice type, 205-206
open type, 207
single choice type, 204-205

randomizing arrays, 81-82
read pipelines, 165
readfile() function

files, reading, 112
use with file wrappers, 163

reading
files

fread() function, 107
readfile() function, 112
single line at time (fgets() function),

107-108
from sockets, 169

real numeric data types, 9-10
referential integrity, 148
register_globals directive, enabled

dangers, 178-179
registering for Zend PHP Certification

exam, 201-202

regular expressions (regexps), 98
data extraction, 100-101
pattern replacement, 101
PCRE (Perl Compatible Regular

Expressions), 98
base character classes, 98-99
enumerator operators, 99-100
pattern modifiers, 100

POSIX, 98
relational databases (schemas), 146
remote hosts, connecting via sockets,

166-167
rename() function, files, moving, 111
replacing

patterns via regular expressions, 101
substrings, 97-98

require construct, 8-9
require once construct, 8-9
reset() function, internal pointer, calling

in arrays, 70-71
resource allocation, testing prior to code

writing, 190-191
resource data values, 12
resultsets

aggregate functions, 152
grouping, 151-152

retrieving
database information with SELECT

statement, 150
date arrays, 117-119
file information via fstats() function, 109
stream metadata, 164-165
UNIX time stamp, 117

from date arrays, 123
from strings, 123-124

RFCs (Request for Comments)
email standards, 140
Internet Engineering Task Force (IETF),

172
ROLLBACK TRANSACTION

command, 153
rows

aggregates, 152
tables

deleting (DBMSs), 149-150
inserting (DBMSs), 149

rsort() function, array sorts, 76-77

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 235

236 safe_mode directive

S
safe_mode directive, shared hosting

security, 180-181
SASL (Simple Authentication and

Security Layer), 129
schemas (tables), 146
scope (variables), 30-31
scripts

conditional structures
case statement, 23-25
if-then-else statement, 21-22
overview, 21-22

elements of, 6
email

sending on Netware computers, 131-132
sending on UNIX computers, 130-131
sending on Windows computers, 131-132

loop structures, 25
continue statement, 28
do-while statement, 26
for loop, 26-27
while statement, 25-26

sample, 7
tags, 7-8
variables, use of, 13
versus files, 8

security
code error messages, displaying in

browsers, 192-193
cross-site scripting (XSS), prevention

measures, 180
data filtering

blacklist approach, 178
whitelist approach, 178

databases, SQL injections, 179
register_globals directive, enabled dangers,

178-179
shared hosting

open_basedir directive, 180-181
safe_mode directive, 180-181

shell command injections, 180
SELECT statement, database

information retrieval, 150
sending email

mail() function, 132
on Netware computers, 131-132
on UNIX computers, 130-131
on Windows computers, 131-132

sendmail command, sending email on
UNIX computers, 130-131

serialize() function, 85-86
serializing

arrays, 85-86
objects, 44-45

server-side processing versus client-side
processing, 50-51

sessions, persistent data (HTTP), 56-57
Set-Cookie header (HTTP), 54-55

domain attribute, 55
expires attribute, 55
path attribute, 55
secure attribute, 55

set_error_handler() function, 192-193
shared hosting, security measures

open_basedir directive, 180-181
safe_mode directive, 180-181

shell commands, security vulnerabilities
with injections, 180

Simple Authentication and Security
Layer (SASL), 129

Simple Mail Transport Protocol. See
SMTP

single choice questions (exam), 204-205
single quotes, declaration of string

values, 10
sleep() function, object serialization,

44-45
SMTP (Simple Mail Transport

Protocol), 128
Mail Transport Agents (MTAs),

transmission of, 128
Mail User Agents (MUAs)

security holes, 130
transmission of, 129

sockets
blocking mode, 169-170
book resources, 172
closing, 171
opening, 167-168
persistent, 168
read/write timeouts, 170-171
reading from, 169
remote hosts, connecting to, 166-167
transports, 165

ssl, 167
tcp, 167
tls, 167

17 7090 index 7/16/04 8:43 AM Page 236

237substr() function

udg, 167
udp, 167
unix, 167

writing to, 169
sort() function, array sorts, 76-77
sorting

arrays, 76-78
by keys, 74-76

database information by ORDER BY
clause, 152-153

multidimensional arrays, 78-81
spam, 129
split() function, string splits, 101-102
splitting

commands, code writing readability, 188
strings into components, 101-102

SQL injections, security vulnerabilities,
179

sscanf() function, 96-97
ssl transport (sockets), 167
statements

function of, 13
syntax requirements, 13

static data, performance optimization
measures, 194

STDIO transport (streams), 165
str_replace() function, 97-98
strcasecmp() function, strings,

comparing, 91
strcmp() function

dictionary ordering, 91
strings, comparing, 91

streams
components of, 163
metadata

function of, 163-164
retrieving, 164-165

Streams architecture
built-in transports

socket, 165
STDIO, 165

components of, 163
context, creating, 165
file wrappers

built-in, 158-160
closing, 162
copy() function, 163
file() function, 163

file_get_contents() function, 163
filesystem functions, 162
function of, 158
readfile() function, 163
selecting, 158-159
supported operations, 160-161

metadata
function of, 163-164
retrieving, 164-165

pipelines, 165
stream_context_create() function, 165
stream_get_meta_data() function,

164-165
stream_set_blocking() function, 169-170
stream_set_timeout() function, 170-171
stream_wrapper_register() function, 160
strftime() function, formatting tokens,

121-123
string values, declaration methods

double quotes, 10
heredoc syntax, 11
single quotes, 10

string-formatted dates, 115-116, 119-123
strings

comparing
via comparison operators, 90
via strcasecmp() function, 91
via strcmp() function, 91

data, extracting, 95-96
files, reading into (file_get_contents()

function), 113
formatted data, extracting, 96-97
formatting, 93-95
operators, concatnetion (.), 17
portions, matching, 92-93
splitting into components, 101-102

strip_tags() function, cross-site scripting
prevention, 180

strncasecmp() function, 92
strncmp() function, 92
strstr() function, 92-93
strtotime() function, retrieval of UNIX

time stamp from strings, 123-124
subjects of email, setting, 133
subpatterns in regular expressions,
100-101
substituting variables in strings, 13
substr() function, data extraction, 96

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 237

238 substr_replace() function

substr_replace() function, 97
substrings, 92

leading, matching, 92
matching at arbitrary offsets, 92-93
modifying by offset, 97
replacing, 97-98

subtraction (-) operator, 15
superglobal arrays

$_GET, 51-54
$_POST, 51-54
form data, handling, 51-54

T
tables

columns, 146
creating (DBMSs), 149
data, retrieving (SELECT statement), 150
database optimization, 195-196
inner joins, 150-151
outer joins, 150-151
referential integrity, 148
rows, 146

aggregates, 152
deleting (DBMSs), 149-150
inserting (DBMSs), 149

tags
closing, 7-8
code writing readability, 189
expression output, 8
opening, 7-8

tcp transport (sockets), 167
ternary operators, if statements,

embedding, 191-192
test centers

arrival times, 202
ID requirements, 202
locating, 201
materials provided, 203
personal belongings, 202
walk-in registrations, 202

text, line endings, correct detection of,
162

time formats
Coordinated Universal Time (CUT), 116
date arrays, 115-116

retrieving, 117-119
Greenwich Mean Time (GMT), 116

string-formatted dates, 115-116, 119-123
UNIX time stamps, 115-116

retrieving, 117
retrieving from date arrays, 123
retrieving strings, 123-124

time() function, UNIX time stamp
retrieval, 117

timeouts (sockets)
opening, 168
read/write operations, 170-171

tls transport (sockets), 167
transactions (DBMSs)

COMMIT TRANSACTION command,
153

creating, 153
ROLLBACK TRANSACTION

command, 153
transports (streams)

socket, 165
STDIO, 165

troubleshooting email delivery
problems, 139-140

typecasting operators
(array), 19
(float), 19
(int), 19
(object), 19
(string), 19

U - V
udg transport (sockets), 167
udp transport (sockets), 167
UNIX

email, sending, 130-131
time stamps, retrieving, 115-117

from date arrays, 123
from strings, 123-124

unix transport (sockets), 167
unlink() function, file deletion, 111
unserialize() function, 85-86

variable functions, 32-33
variables

array values, assigning, 65-66
assigning by reference, 38-42
data containment, 12

17 7090 index 7/16/04 8:43 AM Page 238

239Zend PHP Certification

dollar sign ($) syntax, 13
function of, 12
scope, 30-31
script advantages, 13
strings, substituting, 13

W - Z
wake_up() function, object serialization,

44-45
walking through arrays, 68-71
Web browsers

error messages, displaying, 192-193
forms, processing, 51-54
HTTP requests, 50

web pages, output scripts, compression
of, 195

web servers, performance optimization
measures

child processes, 194
DNS resolution reversal, 194

websites
database optimization

query limits, 195
table indexes, 195-196

Internet Engineering Task Force (IETF),
172

Internet Mail Consortium, 140
Pearson VUE, 201

while statement in loop structures, 25-26
whitelist approach, data filtering, 178
whitespace in code writing, 186
Windows, email, sending, 131-132
write pipelines, 165
writing

code
command splitting over multiple lines, 188
flattening of if statements, 187-188
if statements, embedding, 191-192
logical groupings, 186
predefined standards, 186
program documentation, 186
tag styles, 189
testing for resource allocation, 190-191
use of concatenation operator, 188-189
use of condition statements, 189-190
use of identity operators, 190
whitespace, 186

to files with fwrite() function, 108-109
indices for databases, 147
to sockets, 169

XOR operator (logical), 18

Zend Performance Suite, 197
Zend PHP Certification, exams,

registering, 201

How can we make this index more useful? Email us at indexes@samspublishing.com

17 7090 index 7/16/04 8:43 AM Page 239

17 7090 index 7/16/04 8:43 AM Page 240

17 7090 index 7/16/04 8:43 AM Page 241

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you

relevance-ranked results in a matter of seconds.

■ Immediate results.
With InformIt Online Books, you can select the book you

want and view the chapter or section you need immediately.

■ Cut, paste, and annotate.
Paste code to save time and eliminate typographical errors.

Make notes on the material you find useful and choose
whether or not to share them with your workgroup.

■ Customized for your enterprise.
Customize a library for you, your department, or your entire

organization. You pay only for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
InformIT Online Books is offering its members a 10-book subscription risk free
for 14 days. Visit http://www.informit.com/onlinebooks for details.

SamsSafari7x9.qxd 1/7/03 2:54 PM Page 1

www.informit.com

Your Guide
to Computer
Technology

Sams has partnered with InformIT.com to bring technical information

to your desktop. Drawing on Sams authors and reviewers to provide

additional information on topics you’re interested in, InformIT.com has

free, in-depth information you won’t find anywhere else.

ARTICLES

Keep your edge with thousands of free articles, in-depth features, interviews,
and information technology reference recommendations—all written by
experts you know and trust.

ONLINE BOOKS

Answers in an instant from InformIT Online Books’ 600+ fully searchable
online books. Sign up now and get your first 14 days free.

CATALOG

Review online sample chapters and author biographies to choose exactly the
right book from a selection of more than 5,000 titles.

www.samspublishing.com

SamsInformITBM5.7x9.qxd 1/7/03 2:52 PM Page 1223

20 327090 Ad 1 7/16/04 8:44 AM Page 246

21 327090 Ad 2 7/16/04 8:43 AM Page 247

22 327090 Ad 3 7/16/04 8:45 AM Page 248

	Zend PHP Certification Study Guide
	Title Page
	Copyrights, Trademarks, and Credits
	Contents at a Glance
	Table of Contents
	Introduction
	Chapter 1: The Basics of PHP
	Chapter 2: Object-Oriented PHP
	Chapter 3: PHP and the Web
	Chapter 4: Arrays
	Chapter 5: Strings and Regular Expressions
	Chapter 6: File Manipulation
	Chapter 7: Managing Dates and Times
	Chapter 8: Managing Email
	Chapter 9: PHP and Databases
	Chapter 10: Stream and Network Programming
	Chapter 11: Security
	Chapter 12: Debugging and Performance
	Chapter 13: Getting Ready for the Certification Exam
	Practice Exam Questions
	Glossary
	Index

