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1 Introduction

Modern technology is transforming manual work flows into digital automated processes with more efficiency and less
human dependency. Digital transformation and hyper connectivity of entities, which include businesses, households,
governments, and other public and private organizations, have led to widespread use of digital transactions. The massive
digitization of transactions has increased the need of security, privacy and confidentiality. Since the same technological
advances are also accessible to dishonest parties, the security and transparency of such processes are of paramount
importance.

Online auctions is one example of a digital transaction that recently has gained a great deal of popularity as a replacement
for traditional buy-sell market place settings since online auctions are much more convenient for auctioneers and bidders
who do not have to physically attend an auction. Given that online auctions can reach wider range of bidders, the
auctioneer can get more competitive prices, compared to traditional auctions. From security and privacy standpoint,
online auctions require same level of security, confidentiality and privacy as it is required in any other electronic
transaction settings. Research on cryptography field provides technologies that can be applied in auction applications.
Zero-knowledge proof, ZKP, is one of those. This project is about the application of ZKP on transactions in online
auctions and its goal is to apply this technology to provide transparency and privacy in governmental auctions settings.
First, we introduce the auction process and different types of auctions. Next, we briefly review literature on security
issues in auctions and application of various cryptographic schemes for electronic auctions. Then, we discuss ZKP
concepts and the implementation of such constructions, in particular Bulletproofs which was the ZKP used in this
project. After this, we discuss our code implementation and finally we conclude with the findings of our experience in
applying Bulletproof cryptography protocol in the auction use case.

2 Auctions

2.1 Definition

Auction is a form of price negotiation. In traditional e-commerce setting, the seller or producer publishes an asking
price for a product or service. This mechanism allow auctioneers to get the highest price for a product, service or
prize. In a typical setting, bidders make their bids and those represent a commitment to pay that amount offered by the
auctioned item. Bids can be opened or closed, meaning that bidders can or cannot see others bid values. Additionally,
auctions can be forward or reverse. On the first type buyers are the bidders and on the second one the auctioneer is the
buyer who is interested in paying the lowest price offered by several suppliers, or bidders, for one product of service.

Online auctions are the digital representation of this work-flow on the internet. Buyers and sellers located around the
world can negotiate and exchange goods and services. The auction process is run by software agents with website
interfaces which facilitate bidding and selection of the winning.

2.2 Types of auctions

There are several types of auctions. At the primary level there are four types of auctions.

Open Cry Auction: This is the traditional type of auction in which the bidder publicly announces their bid.
In English-Auction setting, the auctioneer invites bids. Once a bid has been made, the subsequent bids are
higher than the previous bid. The latest bidder is the winner. This type of auction is also called ascending
price auction since each subsequent bidder bids higher price than the previous one. On the other hand, in
Dutch-Auction setting, the auctioneer offers goods and service at a high price. If no one buyer accepts the
price, the price is lowered and so on. The first bidder wins the auction
Sealed Bid Auction:This auction setting may involve several phases. In the first phase, many bidders bid but
the bidding value is not known by the public. In the second phase, the bids are opened and the auctioneer may
select the winner with lowest value. This sequence may be iterated several times until the auctioneer gets a
price and quality required.
Multi-items auctions: In this auction, multiple identical items are for sale. Each winner pays the price he bid
(Discriminative Auction) or each winner pays the price of the lowest winning bid (Non-discriminative auction)
Vickrey Auction: This is also called as Secondary price auction. The winner pays the second highest price
bid.

In addition to the above major four types of auctions there are several other types auctions based on who bids, who sells,
number of bidders or number of sellers. Reverse auction is an auction where the role of buyer and sellers are reversed.
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There is only one buyer receiving bids from multiple sellers who are making their bids to sell their offering. The reverse
auction methods is commonly used in procurement processes by governments. Governmental organizations engage in
public auctions by issuing public tenders. In this setting, the suppliers compete to sell their goods and services. The
government wants to involve public without any discrimination. Fair chance is given to all participants of the society.
In this fair process, the government selects a competitive price among the sellers who meets government’s minimal
requirements predefined criteria. In this setting, typically bidders do not want to share their price information during
auction process. This process is similar to the sealed-bid auction, described before.

2.3 Governmental Auctions Requirements

Governmental auctions have several implications since they deal with public goods. Below is list of typical requirements
in such public auctions.

(i) Fairness:
This is most important requirement for this auction setting. All participants must be treated equally. During
the auction, all bids should remain confidential. After the bidding phase is completed, no bidder should be
able to modify the committed bid (Unforgeability). Finally, during the opening phase, all the bids must be
opened and lowest bid must win.

(ii) Confidentiality:
Except the winning bid all the other bids must remain confidential

(iii) Anonymity:
Information about the identity of the bidders must be confidential. However the identity of the winning bid
may not be confidential.

2.4 Zero-knowledge Proofs Applied to Auctions

Online public auctions could benefit from the properties of zero-knowledge proofs. This technology provides proofs
keeping the privacy which is the paradox faced by such auctions. It is necessary to provide transparency by showing
that the lowest price won while keeping price privacy of all other bidders. The central idea of the proposed solution in
this project is to design a proof system that uses zero-knowledge proofs to demonstrate the selection of the winning bid
followed the rules without leaking any information that needs to remain confidential. Below, is a list of main steps of
the solution work-flow.

(a) Auction Initiation: The auctioneer initiates the auction by starting an auction repository. This auction repository
will stores all committed bids, not their openings. This repository is public to all public auction participants.

(b) Bid commitments: The bidders commit their bids by submitting the cryptographic commitments of their bid
value

(c) Opening Bids: After the commitment phase is finished, the auctioneer opens all commitments using the
instructions private to him.

(d) Proof generation: It is generated one proof for each losing bid. This proof demonstrate that the difference
between the losing value and winning value is positive. All proofs use the pre-committed values and no plan
text values should be disclosed.

(e) Proof Verification: Each proof can be publicly verified by any interested party.

3 Related work

Recent literature covering online reverse auctions is quite limited. However, we found some research covering online
forward auctions. In [1], there are recommendations for electronic auctions where researchers spotted security and
privacy issues while simulating the open-cry auctions. Slow completion rate and lack of anonymity are inherent in
open-cry auctions. Internet security challenges make implementation of online open cry auctions challenging [2, 3].

There are some previous work on sealed bid auctions. Part of them address issues from bidder perspective such as
refusal of opening bid by the bidder and communication failure [3, 4]. Those proposals suggested usage of undeniable
signature schemes, electronic cash technology with anonymity and non interactive proofs. Other related research
address issues from auctioneer perspective such as trust and fairness issues [2, 5, 6, 7]. Those proposals recommend
usage of verifiable signature sharing to distribute electronic version of auction escrow among distributed auctioneers,

4



which are expected to force bidders to open their bids. Another recommendation is based on a complex polynomial
secret sharing scheme in combination with bid splitting, essentially to enforce trust. These protocol proposals have their
own issues or they did not address all security and privacy issues of auctions. They also incur high communication and
computational costs.

There are some recent auctions related work using non-interactive proofs and other cryptography protocols. This
mentioned work discuss auctions in Smart contract settings in Blockchain. For example the article in [8], it is provided
an application design short zero-knowledge proofs to confirm consistency of auctions.

4 Zero-knowledge proofs

Zero-knowledge proof [9] is a method by which one party, the prover, can convince another party, the verifier, that they
possess knowledge of some information without revealing the knowledge itself. A prover can for example convince a
verifier that a confidential transaction is valid without revealing why that is the case, i.e. without leaking the transacted
values. While the prover can prove his possession of some knowledge by simply revealing that knowledge to the verifier,
the challenge of ZKP is to prove such knowledge without revealing the information itself or any additional information
at all.

4.1 Intuition

There is a cave with a single entrance but with two interconnected tunnels that form a ring. In the ring, there is a locked
door on the opposite side of the entrance which opens when some secret code is input on its puzzle-lock.

Figure 1: Ali Baba cave story

The figure 1 shows the layout of this cave. Peggy, wearing a pink shirt in the figure 1, knows the puzzle-lock secret and
she, as prover, wants to demonstrate to the verifier Victor, who is wearing the green shirt, that she knows the code that
unlocks the door but without revealing the secret code itself. To proceed with this proof, they engage in the following
protocol:

• Peggy enters the cave from one of the two tunnels to the ring, A or B, while Victor waits outside.

• Then, Victor goes to the cave entrance and shouts to Peggy, asking her to leave the cave from either side A or
B. Victor must choose his exit request randomly.

• If Peggy is on side B and Victor requested exit through side A, she can open the door and leave the cave from
the right side. Otherwise, she can just leave the cave from the same side B. The point is that if Peggy knows
the door secret, she should always be able to satisfy Victor’s exit request regardless of what Victor chooses.

Because there is a 50% probability that Victor will request Peggy to exit from the same side that she entered from,
Peggy may get lucky and satisfy Victor’s requests without actually knowing the secret code. However, if request for
exit side is truly random, and the protocol is repeated enough times, the probability of Peggy satisfying all of Victor’s
requests without knowing the secret becomes vanishingly small.

4.2 Definition

In [10], zero-knowledge proof is defined by a protocol involving two parties, prover and verifier, in which prover
convinces the verifier that a statement of the form u ∈ L holds true where L is a language in NP. A witness w is a piece
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of information that allows one to efficiently verify that that the statement u ∈ L is true. The protocol must satisfy three
properties:

• Completeness: A prover holding a witness w to u ∈ L can convince the verifier.
• Soundness: A cheating prover P ∗ cannot convince the verifier when u 6∈ L except with some small probability.
• Zero-knowledge: The interaction only shows that statement u ∈ L is true. It reveals nothing else, in particular

it does not disclose anything of the witness w.

4.3 Interactive Proofs

Figure 2 shows the typical structure of interactive zero-knowledge proofs. This structure, also known as Sigma protocol,
comprises of three communication steps between prover and verifier:

Figure 2: ZKPs - Sigma protocol

1. Commitment: Prover commits to a particular value and transfers the commitment to the verifier. In the cave
story, this step is equivalent to Peggy choosing one of the two sides to enter the cave, and letting verifier know
once she has entered the cave.

2. Challenge Verifier sends a random challenge to the prover. This step is equivalent to Victor challenging Peggy
to exit from one of two sides chosen at random.

3. Response Prover computes a response based on the challenge and witness, and sends it to verifier for the
task of verification. This step corresponds to Peggy leaving the cave from the side requested by Victor given
her secret knowledge. Victor, waiting at the mouth of the cave, can check whether Peggy returns from the
requested side.

The interactive ZKP protocols are rarely used in practice due to the restrictions they impose on the proof system. First,
the interactive protocol often assumes that prover is very powerful with unbounded computational capacity since prover
may have to conduct exponentially large number of rounds to convince an honest verifier that the proof is valid. Second,
it is a synchronous protocol meaning that prover and verifier need to interact with each other in real time to execute the
protocol. It goes without saying that such restrictions limit the suitability of these proofs for most applications which
require concurrency and non-interactivity.

4.4 Non-Interactive Proof

In several settings, it is necessary to have an offline verification process. For example, in cryptocurrency, zero-knowledge
proofs can be useful in validating integrity of a transaction stored in the blockchain while protecting the participant’s
information. This validation needs to be performed by several validators in the blockchain. It is not practical to make
transaction participants interact with all the validators. Moreover, they will most likely not be available to interact with
each other at the same time. Therefore, a mechanism to allow a verification process that does not depend on interaction
between prover and verifier is very useful in this example as well as many other applications of ZKPs.

Fortunately, there is a very simple and powerful construction to transform a interactive proof into a non-interactive proof
under some assumptions. Fiat-Shamir heuristic [11] takes an interactive proof and creates a non-interactive version
provided that the original proof is public coin. This assumption basically states that the challenges made by the verifier
on the interactive protocol are public. The central idea of this protocol is to use a hash function on the commitment
aiming to generate a random and unpredictable challenge from the perspective of the prover. This way, even though the
prover generates an entire transcript of the protocol without interacting with verifier, the prover cannot cheat as the
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output of the hash function is beyond his control. Figure 3 presents the structure of non-interactive protocol where
challenge is replaced by hash of the previous commitments in the protocol. Pointcheval and Stern [12] proved that
Fiat-Shamir protocol is secure against chosen message attack as long as the hash function used behaves like a random
oracle. The resulting Fiat-Shamir transcript is a digital signature of the proof and it can be verified multiple times and at
any time the verifier wants to check the proof.

Figure 3: Zero-knowledge proof - Fiat Shamir heuristic

4.5 Implementations of Non-Interactive Proofs

There are several implementations of non-interactive zero-knowledge (NIZK) proofs; each implementation targets
a specific goal and it has their pros and cons. One distinguishing feature among various implementations is related
to whether they provide proof protocol for a specific type of problem (specialized NIZK) or a more general class of
problems (generic NIZK). Specialized constructions use a specific mathematical formulation to address the task in hand
that leads to efficiency either in size or execution performance. An interesting example can be found in [13]. In this
paper, the authors construct a zero-knowledge proof to prove if a number is inside a specific range. This construction is
optimized to produce a small and fast proof to be executed as part of smart contracts in the Ethereum platform since
blockchain ecosystem charges contracts based on their execution time and storage cost.

Generic statement proof systems allow us to prove seemingly different problem statements using the same framework.
For example, proving of knowledge of secret input of a known function with a known output is generic in the sense
that any known function with known output can be used. In [14], it is described how proofs for such statements can be
constructed using low degree polynomials such that verifier can succinctly check the computational integrity statements.
This construction, called Fast Reed-Solomon Interactive Oracle Proofs of Proximity, is beyond the scope of this report
and it can be found in [15]. Nonetheless, the technique requires provers to construct the polynomials according to
the formulation preventing them from cheating i.e it requires prover to be honest. This problem is addressed in two
main approaches. The first approach uses cryptographic constructions to hide the challenge in which the constructed
polynomial will be tested. This is associated with the need of trusted setup, meaning that there must be a previously
trusted source of randomness that needs to be shared between the prover and verifier. The second approach requires
additional algebra and extra committed proofs that enable the verifier to check the consistency of the proof system.
The trade-off between these two solutions is between the size of the proof and the need for the trusted setup. In some
settings, such as cryptocurrency systems, the requirement of a previous trusted setup generated by a third-party can be a
relevant source of vulnerability.

The three perhaps most popular NIZK systems use the polynomial constructions discussed in [15] and aim to solve
the problem mentioned above, using one of the two approaches. These systems are ZK-SNARK (Zero-Knowledge
Succinct Non-interactive ARgument of Knowledge), ZK-STARK (Zero-Knowledge Scalable Transparent ARguments
of Knowledge) and Bulletproofs. The table 1, extracted from [16], shows the characteristics of these three systems.
Analyzing the data from this table, it is possible to see that ZK-SNARK and ZK-STARK are in two different poles when
it comes to proof size. Basically, we need to trade off small proof size with the need of trusted setup. STARKS proof on
the other hand does not require this inconvenient previous trusted setup and also is quantum resistant. However, this
system generates the biggest proof size. ZK-STARK and ZK-SNARK proof systems have relatively similar prover
and verification time in contrast with Bulletproofs which has the poorest performance. The biggest benefit of the
Bulletproofs is the relatively small proof size as well as the fact that this proof system does not require trusted setup.

Table 1: Most popular zero-knowledge proof systems

Trusted Setup Proof Size Prover Time Verification Time

SNARK Required 288 bytes 2.3s 10ms
STARK Notrequired 45-200kB 1.6s 16ms
Bulletproofs Not required 1.3kB 30s 1100ms
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5 Bulletproofs

Bulletproof system [10, 8] was designed to tackle two major problems of previously existent NIZK systems. ZK-
SNARKs require a trusted setup and ZK-STARKs have long size proofs and demand a high computation during
the proof construction. None of these characteristics are desirable and in the cryptocurrency systems, they can be
prohibitively expensive. Bulletproof solves the problem of trusted setup requirement with reasonable trade off on size.
In terms of computational requirements, this proof system is outperformed by ZK-SNARKs and ZK-STARKs, but still
practical to be used in cryptocurrency systems. For these characteristics as well the fact that Bulletproof is well-suited
for proving statements on committed values, we decided to use Bulletproof protocols in our project.

This system is zero-knowledge argument of knowledge, meaning that a prover is able to convince a verifier that a
statement holds without revealing any information about the inputs of the statement. It is assumed that the prover is
computationally bounded which limits his ability to forge proofs. In addition, the argument of knowledge needs to
be public coin, meaning that the challenges sent by verifier are independent of prover’s messages and correspond to
the randomness generated independently by the verifier. This last assumption allows the interactive proof design to be
transformed into a non-interactive proof system, NIZK, by using Fiat-Shamir heuristic. Finally, Bulletproofs rely on
Pedersen commitments to hide the secret inputs and provide computational integrity check.

5.1 Inner Product Argument

The most important building block of Bulletproof is its efficient algorithm to calculate an inner-product argument for
two independent binding vector Pedersen Commitments. The argument is an argument of knowledge that the prover
knows openings a,b ∈ Znp of binding Pedersen vector commitments that satisfy an inner product relation c = 〈a,b〉 as
shown below.

(g,h ∈ Gn, P ∈ G, c ∈ Zp; a,b ∈ Znp ) : P = ga.hb and c = 〈a,b〉

where G denotes cyclic group of prime order p, Zp denotes a ring of integers modulo p and Gn, Znp denote vector
spaces of dimension n over G and Zp respectively.

Here, we give the simple overview of how this proof is constructed. Given the initial relation, the algorithm uses the
homomorphic properties of Pedersen commitments to derive an interactive proof system to prove the original inner
product statement. In the commitment step, commitment vectors gahb are split in two other vectors L and R which are
multiplied by the random values received from the verifier. After this computation, the modified vectors L and R are
sent to the verifier, who is able to compute again the inner product using these changed vectors that are consistent with
the original statement. Given homomorphic properties of the commitments, the verifier is able to conclude if the proof
is complete and sound. Finally, this proof system can be converted into a non-interactive one by using Fiat-Shamir
heuristic. The details of this proof system are beyond the scope of this report and can be found in [10, 8].

5.2 Range Proofs

Bulletproofs have a construction to handle range proof, which is a proof system that allows prover to convince verifier
that a secret committed value is inside a particular range. In fact, the formulation presented in [8], allows proofs for the
range [0, 2n − 1]. The relation presented on the previous sub-section is modified to the equation 1.

{(g, h ∈ G, V, n; v, γ ∈ Zp) : V = gv.hγ ∧ v ∈ [0, 2n − 1]} (1)

This construction uses a bit representation of the value being proved to be in the range. Let aL = (a1, a2, ..., an) ∈
{0, 1}n to be the binary representation of v, the value we want to prove to be in the range [0, 2n − 1]. The equations 2,
ensures that aL is the bit representation of v. In the first equation each non-zero bit is multiplied by its correspondent 2
power to generate the value v. The second equation generates the vector aR which contains -1’s on the correspondent
0 bits of aL and 0’s on the correspondents 1’s, assuming that aL has only 0’s and 1’s. Finally, the third equation just
check that aL is composed by 0’s and 1’s and aR is composed by -1’s and 0’s. These three set of equations constraint
aL to be the bit representation of v using only multiplication and additions. This is necessary to fit in the inner product
formulation.

〈aL, 2n〉 = v and aR = aL − 1n and aL ◦ aR = 0n (2)
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Using this algebraic construction, it is possible to derive another set of equations that uses a similar construction of the
inner product proof presented before. The details of this formulation goes beyond the scope of this paper and can be
found in [8]. With this formulation is possible to prove that a number v is inside a range [0, 2n − 1].

5.3 Arithmetic Circuits

Bulletproofs also offer a formulation to prove the satisfiability of arithmetic circuits. Those are expressed by set of
addition and multiplication operations organized like a electronic digital circuit. Even though only these two operations
are allowed, this representation is powerful and expressive enabling the formulation of quite general statements. The
reason why only addition and multiplication are allowed is due to the fact that addition can be easily computed using the
homomorphic properties of Pedersen commitments and multiplication can be manipulated to generate a inner product.
Using these facts, arithmetic circuit satisfiability can be proved using the constructions presented in the subsections
before and discussed in details in [8].

6 Code Implementation

To build the prototype of this project, we experimented with two Bulletproofs implementations. The first one is called
Hyrax [17] which is actually a doubly-efficient zk-SNARK implementation that contains code for Bulletproofs as well.
This code base was developed and is maintained by Riad S. Wahby from Stanford university. The other implementation
is called BulletproofLib [18] and was developed by Benedikt Bünz who is one of the main authors of Bulletproofs
paper [8].

For the sake of transparency, buying auctioneer aims to prove to participating bidders that he chose the winning bid
fairly i.e the winning bid is the lowest bid among all bids and the winning bid is chosen from one of the committed bids
in the bidding phase. For convenience, we restate below the workflow in reverse auction setting.

• Setup phase:Auctioneer announces tender request for a service in a smart contract

• Bidding phase: Every bidder sends commitment for the bid offer and the commitment is publicly available

• Revealing phase: Auctioneer opens all bid commitments and picks the winning bid as the bid with lowest
offer price. Auctioneer then announces the winning bid commitment and does not reveal the winning bid offer
publicly.

• Proof phase: Let l denote a particular losing bid value, and w the winning bid value, then d = l − w. If
l > w, then d > 0. If n denotes the bit size of a maximum possible bid value, then the maximum possible
difference between any bid offers is also given by n bits. Auctioneer sets up a zero-knowledge range proof to
show that commitment Cd = Cl − Cw is opened by d which lies in the range [0, 2n − 1] without revealing
d. The difference between any two arbitrary bids lies in the interval [−(2n − 1), 2n − 1]. If the group size
p is large enough, at least twice the length of the range interval [0, 2n − 1], then negative values of d would
lie outside the range interval since small negative values modulus large p would lie close to p. Auctioneer
sends a relevant range proof transcript to each verifier where the transcript aims to convince the verifier of the
following relation:

(g, h ∈ G, C, n; d, γ ∈ Zp) : C = d.g + γ.h ∧ d ∈ [0, 2n − 1]

assuming the commitment scheme is Pedersen under Elliptic curve field.

• Verification phase Each losing bidder, as an independent verifier, first computes Cd based on the publicly
available commitment of the winner and their own commitment to ensure that they received the correct
transcript, and then verifies the transcript received from the prover.

6.1 Hyrax

We started with the proof of concept development using Hyrax. This implementation does not have an implementation
for range proofs but it does have an implementation for arithmetic circuits. Therefore, we coded an arithmetic circuit
that output the most significant bit of a subtraction between two numbers. Assuming a signed bit representation for
the values of a losing and winner bit, we were able to determine that one value is greater than other, by checking
the signed bit of the difference. Hence, we input two values, the losing bid value and the winner bid value, into this
arithmetic circuit to generate the transcript to be sent to the correspondent losing bidder. This would allow the bidder to
verify the correctness of the workflow performed by the auctioneer. However, we realize that HyraxZK implementation
generates the commitments automatically at the time that prover generates the proof. Conversely, in our workflow,
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we need touse and provide the pre-committed values, the ones used during the bid phase, as part of the proof in order
to check correctness of the auctioneer procedure. To address this issue, it would be necessary to change the Hyrax
code so that we could use pre-committed values on the proof generation. However, this code modification was beyond
our implementation capacity since there was not much documentation available. As result, we decided to use another
Bulletproof implementation.

6.2 BulletproofLib

BulletproofLib is a Java implementation of all the protocols covered in the Bulletproofs paper [8] written by the author
of the paper named Buenz. This implementation makes use of other Java cryptography APIs such as BouncyCastle
for use of elliptic curve and group element primitives. We focused on the range proof implementation and tried our
auction proof design with this code. Since this code was not production ready, there were some minor bugs that we
had to fix, and because there was no executable main file either, we first created a main file in which we called the
Prover and Verifier interface methods to setup the proof. To briefly summarize, we first create public parameters using a
parameter generation method where we pass in the interval bit size n, as well as the specific type of elliptic curve (p is a
256 bit prime, so it is quite large). Next, we generate two random blinding factors, one for each of the two bid values,
and create the two commitments, one for losing bid and one for winning bid. Next, we call the prover who takes in
the parameters, difference committed value, and the witness (stores the the two bid values, and their corresponding
randomness) and generates a proof transcript in a non-interactive manner. Next, the verifier takes the parameters,
difference committed value, and the proof transcript. We checked that verifier accepts whenever the difference is
positive, and rejects whenever the difference is negative. Thus, it seems our zero-knowledge design for auction scenario
is feasible. The code for my Java main file is attached in the appendix at the end.

7 Future work

One important step of the reverse auction workflow is the bid commitment phase. Our proposed setup assumes that
every bidder knows all bid commitments from all other bidders. This previous knowledge is necessary to make the
proof consistent. The losing bidders receive proofs that the difference of their bid values and the winning bid value
is positive. Hence, they need to confirm that this winning value is part of the original commitments, otherwise they
would not be confident that the auctioneer did not create a fake commitment to benefit somebody else. As a result, all
bidders must know all other commitments. However, this leads to another problem, which is related to the malleability
of Pedersen commitments, which are used in the Bulletproofs. One bidder could generate a lower value commitment
based on previous commitments already sent. Therefore a dishonest bidder could exploit opportunity to take advantage
in the process. However, this bidder will not be able to open this commitment since he does not know the original value
neither the hiding factor of the commitment, assuming that the openings are not public. Hence, it seems reasonable to
leave all commitments public. It is still necessary though to have a setup that allows all participant bidders to track
which commitments are part of the auction. One possible solution could be the usage of smart contract and blockchain
to guarantee transparency and immutability of this information. For example, a smart contract could collect all bid
commitments and store them all in the blockchain. This way, everybody could check how this smart contract was
implemented and trace all bid commitments into the blockchain. This should provide trust to all bidders that nobody
could create a fake commitment to take advantage in the auction. Although this approach seems to be reasonable to
solve this problem, it should be implemented and tested to check its robustness and consistency. For sure, this topic
should be an area of future work.

8 Conclusion

This project allowed us to gain an insight into an exciting albeit complex field of zero-knowledge cryptography. We
delved into the implementations of zero-knowledge proofs and designed a proof system to generate transparency
alongside privacy in online auctions. This cryptographic construction is very fascinating as it enables us to put together
the two contrasting objectives of privacy and transparency. As mentioned in the earlier sections, transparency in public
reverse auctions is a big concern and addressing it properly can bring several benefits to the society. We have seen that
there are several zero-knowledge proofs cryptographic constructions that can be used in this problem. We decided to
use Bulletproof construction, which represents a good trade-off between the security assumption and performance of the
proof system. The experiments that we ran gave us several insights about how this system should work in practice but
as we discussed in the previous section, there are other aspects that need to be considered from the design standpoint.

The prototype construction was very important as a thought experiment. Our solution design changed significantly as
we worked on the proof of concept because we had substantial practical feedback from the available implementations
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and testing environment. Some concepts such as usage of public commitments for the bids were envisioned after we put
together the prototype. Therefore, the development of such proof concepts is crucial to achieve a solid solution design.

Finally, zero-knowledge proof cryptography has become a hot research area in the wake of advances in cryptocurrency
and blockchain technology. However other application domains, including auctions, could also benefit from this
very useful technology. The need for transparency is more relevant than ever before due to massive digitization of
organizational workflows, especially in the public sector and zero-knowledge proofs could be a cryptographic tool
to generate confidence among the players and stake holders involved. However, the current implementations for
zero-knowledge proofs are still experimental and not very user or developer friendly. The lack of production ready tools
is an obstacle for broad adoption in the near future but it can be overcome as people continue to work on it.
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Appendix

package edu.stanford.cs.crypto.efficientct.rangeproof;

import java.math.BigInteger;
import edu.stanford.cs.crypto.efficientct.GeneratorParams;
import edu.stanford.cs.crypto.efficientct.VerificationFailedException;
import edu.stanford.cs.crypto.efficientct.algebra.BouncyCastleECPoint;
import edu.stanford.cs.crypto.efficientct.algebra.C0C0Group;
import edu.stanford.cs.crypto.efficientct.algebra.GroupElement;
import edu.stanford.cs.crypto.efficientct.commitments.PeddersenCommitment;
import edu.stanford.cs.crypto.efficientct.util.ProofUtils;

public class Main {

public static void main(String[] args) throws VerificationFailedException {
C0C0Group curve = new C0C0Group();

int n = 16;
GeneratorParams parameters = GeneratorParams.generateParams(n,curve);

BigInteger x1 = BigInteger.valueOf(10);
BigInteger x2 = BigInteger.valueOf(20);
BigInteger x_diff = x2.subtract(x1);

BigInteger r1 = ProofUtils.randomNumber();
BigInteger r2 = ProofUtils.randomNumber();
BigInteger r_diff = r2.subtract(r1);

GroupElement v1 = parameters.getBase().commit(x1, r1);
GroupElement v2 = parameters.getBase().commit(x2, r2);

PeddersenCommitment<?> witness1 = new PeddersenCommitment<>(parameters.getBase(),x1, r1);
PeddersenCommitment<?> witness2 = new PeddersenCommitment<>(parameters.getBase(),x2, r2);

PeddersenCommitment<?> witness = new PeddersenCommitment<>(parameters.getBase(), x_diff,
r_diff);

GroupElement diff = parameters.getBase().commit(x_diff, r_diff);
GroupElement other = v2.subtract(v1);
System.out.println( diff.equals(other) );

RangeProofProver prover = new RangeProofProver();
RangeProof proof = prover.generateProof(parameters, diff, witness);

RangeProofVerifier verifier = new RangeProofVerifier();
verifier.verify(parameters, other, proof);

}
}
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